1 |
ZHOU Y S , WANG W , CHEN Z , et al. High-resolution and wide-swath SAR imaging mode using frequency diverse planar array[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (2): 321- 325.
doi: 10.1109/LGRS.2020.2974041
|
2 |
苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034.
|
|
SU J , YANG L , HUANG H , et al. An improved SSD algorithm for small target ship detection in SAR images[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034.
|
3 |
JANSEN R W , RAJ R G , LUKE R , et al. Practical multichannel SAR imaging in the maritime environment[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (7): 4025- 4036.
doi: 10.1109/TGRS.2018.2820911
|
4 |
DING B Y , WEN G J , HUANG X H , et al. Target recognition in SAR images by exploiting the azimuth sensitivity[J]. Remote Sensing Letters, 2017, 8 (9): 821- 830.
doi: 10.1080/2150704X.2017.1331052
|
5 |
ZHOU Z , WANG M , GAO Z J , et al. SAR image recognition with monogenic scale selection-based weighted multi-task joint sparse representation[J]. Remote Sensing, 2018, 10 (4): 504.
doi: 10.3390/rs10040504
|
6 |
ZHOU L , WEI S Y , CUI Z M , et al. Lira-YOLO: a lightweight model for ship detection in radar images[J]. Journal of Systems Engineering and Electronics, 2020, 31 (5): 950- 956.
doi: 10.23919/JSEE.2020.000063
|
7 |
GAO F , MA F , WANG J , et al. Semi-supervised generative adversarial nets with multiple generators for SAR image recognition[J]. Sensors, 2018, 18 (8): 2706- 2710.
doi: 10.3390/s18082706
|
8 |
CHEN X Y , PENG X Y , DUAN R , et al. Deep kernel learning method for SAR image target recognition[J]. Review of Scienti-fic Instruments, 2017, 88 (10): 104706.
doi: 10.1063/1.4993064
|
9 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
10 |
CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]//Proc. of the Asian Conference on Computer Vision, 2016: 214-230.
|
11 |
HU S C, WANG Y W, HUANG C L. Human object identification for human-robot interaction by using fast R-CNN[C]//Proc. of the IEEE International Conference on Robotic Computing, 2018: 201-204.
|
12 |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959.
|
|
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959.
|
13 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
14 |
CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348.
|
15 |
DAI W X , MAO Y Q , YUAN R A , et al. A novel detector based on convolution neural networks for multiscale SAR ship detection in complex background[J]. Sensors, 2020, 20 (9): 2547.
doi: 10.3390/s20092547
|
16 |
DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proc. of the 30th International Conference on Neural Information Processing Systems, 2016: 379-387.
|
17 |
SINGH B, LI H, SHARMA A, et al. R-FCN-3000 at 30fps: decoupling detection and classification[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1081-1090.
|
18 |
田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5 (3): 320- 325.
|
|
TIAN Z Z , ZHAN R H , HU J M , et al. Research on target recognition of SAR image based on convolutional neural network[J]. Journal of Radar, 2016, 5 (3): 320- 325.
|
19 |
HUANG Z L , PAN Z X , LEI B . Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data[J]. Remote Sensing, 2017, 9 (9): 907.
doi: 10.3390/rs9090907
|
20 |
ALMEIDA F Q D , YOUNIS M , KRIEGER G , et al. Multichannel staggered sar azimuth processing[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (5): 2772- 2788.
doi: 10.1109/TGRS.2017.2783444
|
21 |
WANG X L , CHEN C X . Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 184- 187.
doi: 10.1109/LGRS.2016.2633548
|
22 |
LEE S L, TSENG C C. Low-illuminated image enhancement using power law transformation and image fusion[C]//Proc. of the IEEE International Conference on Consumer Electronics, 2018: 120-126.
|
23 |
VERMA M , GHARPURE D C , WAGH V G . Pre-processing of data using logarithmic transformation to improve the spatial resolution of an EIT system for biomedical applications[J]. Journal of Physics: Conference Series, 2019, 1272 (1): 012021.
doi: 10.1088/1742-6596/1272/1/012021
|
24 |
NUGROHO B , PUSPANINGRUM E Y , YUNIARTI A . Performance of face recognition with preprocessing techniques on robust regression method[J]. International Journal of Geomate, 2018, 15 (50): 101- 106.
|
25 |
DEMIR A, YILMAZ F, KOSE O. Early detection of skin cancer using deep learning architectures: resnet-101 and inception-v3[C]//Proc. of the Medical Technologies Congress, 2019.
|
26 |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 770-778.
|
27 |
RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C]//Proc. of the International Symposium on Visual Computing, 2016: 234-244.
|
28 |
韩子硕, 王春平. 基于改进FCM与MRF的SAR图像分割[J]. 系统工程与电子技术, 2019, 41 (8): 1726- 1734.
|
|
HAN Z S , WANG C P . SAR image segmentation based on improved FCM and MRF[J]. Systems Engineering and Electro-nics, 2019, 41 (8): 1726- 1734.
|
29 |
YAO S J , CHEN Y W , TIAN X , et al. GeminiNet: combine fully convolution network with structure of receptive fields for object detection[J]. IEEE Access, 2020, 8, 60305- 60313.
doi: 10.1109/ACCESS.2020.2982939
|
30 |
HOU Y , ZHANG H , ZHOU S L , et al. Efficient ConvNet feature extraction with multiple RoI pooling for landmark-based visual localization of autonomous vehicles[J]. Mobile Information Systems, 2017, 2017 (1): 1- 14.
|
31 |
BAI T , PANG Y , WANG J C , et al. An optimized faster R-CNN method based on DRNet and RoI align for building detection in remote sensing images[J]. Remote Sensing, 2020, 12 (5): 762.
doi: 10.3390/rs12050762
|
32 |
DUBEY A K , JAIN V . Automatic facial recognition using VGG16 based transfer learning model[J]. Journal of Information and Optimization Sciences, 2020, 41 (7): 1589- 1596.
doi: 10.1080/02522667.2020.1809126
|