系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1202-1209.doi: 10.12305/j.issn.1001-506X.2022.04.17

• 传感器与信号处理 • 上一篇    下一篇

基于改进R-FCN的SAR图像识别

周晓玲, 张朝霞*, 鲁雅, 王倩, 王琨琨   

  1. 太原理工大学物理与光电工程学院, 山西 太原 030024
  • 收稿日期:2020-12-14 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 张朝霞
  • 作者简介:周晓玲(1997—), 女, 硕士研究生, 主要研究方向为合成孔径雷达成像、深度学习|张朝霞(1977—), 女, 教授, 博士, 主要研究方向为雷达信号检测及应用研究、认知雷达原理、环境检测及深度学习算法优化|鲁雅(1996—), 女, 硕士研究生, 主要研究方向为电磁逆散射|王倩(1996—), 女, 硕士研究生, 主要研究方向为雷达辐射源|王琨琨(1997—), 女, 硕士研究生, 主要研究方向为微波光子毫米波信号产生及优化
  • 基金资助:
    2020年度山西省高等学校科技成果转化培育项目;山西省重点研发计划项目(高新技术领域)(201803D121057)

SAR image recognition based on improved R-FCN

Xiaoling ZHOU, Zhaoxia ZHANG*, Ya LU, Qian WANG, Kunkun WANG   

  1. College of Physics and Optoelectronic, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2020-12-14 Online:2022-04-01 Published:2022-04-01
  • Contact: Zhaoxia ZHANG

摘要:

由于深度学习在目标识别方面取得了显著的成绩, 为提高合成孔径雷达(synthetic aperture radar, SAR)图像目标识别的精度与速度提供了新的思路。本文将区域全卷积网络(region-based fully convolutional networks, R-FCN)结构应用于SAR图像目标识别中, 取得了良好的效果。对于数据集较小和数据相似度较高的问题, 提出了基于迁移学习的R-FCN模型用于SAR图像目标识别。对更快的区域卷积神经网络(faster region convolutional neural networks, Faster R-CNN)和R-FCN进行模型训练及优化, 并与所提出的基于迁移学习的改进R-FCN模型实验结果进行对比。结果表明, 所提方法对SAR图像具有更好的识别效果和更快的识别速度。

关键词: 机器视觉, 目标识别, 合成孔径雷达, 全卷积网络, 迁移学习

Abstract:

With remarkable achievements in target recognition, deep learning provides new ideas for improving the accuracy and speed of target recognition in synthetic aperture radar (SAR) images. In this paper, region-based fully convolutional networks (R-FCN) are applied to SAR image target recognition, and good results have been achieved. In order to solve the problem of small data set and high data similarity, the R-FCN model based on transfer learning is proposed for target recognition in SAR images. The faster region convolutional neural networks (Faster R-CNN) and the R-FCN models are trained and optimized, and the experimental results are compared with the improved R-FCN model based on transfer learning proposed in this paper. The results show that the proposed method has better recognition effects and faster recognition speed for SAR images.

Key words: machine vision, target recognition, synthetic aperture radar(SAR), fully convolutional network (FCN), migration study

中图分类号: