1 |
VILLANO M , KRIEGER G , STEINBRECHER U , et al. Simultaneous single-/dual- and quad-pol SAR imaging over swaths of different widths[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 25 (3): 2096- 2103.
|
2 |
焦李成, 张向荣, 侯彪, 等. 智能SAR图像处理与解译[M]. 北京: 科学出版社, 2008.
|
|
JIAO L C , ZHANG X R , HOU B , et al. Intelligent SAR image processing and interpretation[M]. Beijing: China Science Publishing & Media Ltd., 2008.
|
3 |
SHEN H F , ZHOU C X , LI J , et al. SAR image despeckling employing a recursive deep CNN prior[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (1): 273- 286.
doi: 10.1109/TGRS.2020.2993319
|
4 |
WANG P Y , ZHANG H , PATEL V M . SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24 (12): 1763- 1767.
doi: 10.1109/LSP.2017.2758203
|
5 |
CUI Z Y , WANG X Y , LIU N Y , et al. ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Trans. on Geoscience and Remote Sensing, 2021, 59 (1): 379- 391.
doi: 10.1109/TGRS.2020.2997200
|
6 |
LIU L, CHEN G W, PAN Z X, et al. Inshore ship detection in SAR images based on deep neural networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 5-28.
|
7 |
陈冬, 句彦伟. 基于改进型YOLOv3的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2021, 43 (4): 937- 943.
|
|
CHEN D , JU Y W . SAR ship detection based on improved YOLOv3[J]. Systems Engineering and Electronics, 2021, 43 (4): 937- 943.
|
8 |
LI W K, ZOU B, XIN Y, et al. An improved CFAR scheme for man-made target detection in high resolution SAR images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2829-2832.
|
9 |
杨国铮, 禹晶, 肖创柏, 等. 基于形态字典学习的复杂背景SAR图像舰船尾迹检测[J]. 自动化学报, 2017, 43 (10): 1713- 1725.
|
|
YANG G Z , YU J , XIAO C B , et al. Ship wake detection in SAR images with complex background using morphological dictionary learning[J]. Acta Automatic Sinica, 2017, 43 (10): 1713- 1725.
|
10 |
ZHU J W , QIU X L , PAN Z X , et al. Projection shape template-based ship target recognition in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 222- 226.
doi: 10.1109/LGRS.2016.2635699
|
11 |
CHEN G , LI G , LIU Y , et al. SAR image despeckling based on combination of fractional-order total variation and nonlocal low rank regularization[J]. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (3): 2056- 2070.
doi: 10.1109/TGRS.2019.2952662
|
12 |
MOLINI A B, VALSESIA D, FRACASTORO G, et al. Towards deep unsupervised SAR despeckling with blind-spot convolutional neural networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 2507-2510.
|
13 |
DALALSASSO E , DENIS L , TUPIN F . SAR2SAR: a semi-supervised despeckling algorithm for SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4321- 4329.
doi: 10.1109/JSTARS.2021.3071864
|
14 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the Computer Vision and Pattern Recognition, 2014: 580-587.
|
15 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the International Conference on Computer Vision, 2015: 1440-1448.
|
16 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
17 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
18 |
HE K , GKIOXARI G , DOLLÁR P , et al. Mask R-CNN[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
19 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37.
|
20 |
LI Z X , ZHOU F Q . FSSD: feature fusion single shot multibox detector[J]. Computer Vision and Pattern Recognition, 2018, 36 (7): 356- 366.
|
21 |
REDMON J, DIVVALA S K, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the Computer Vision and Pattern Recognition, 2016: 779-788.
|
22 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the Computer Vision and Pattern Recognition, 2017: 6517-6525.
|
23 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-5-10]. https://arxiv.org/abs/1804.02767v1.
|
24 |
BOCHKOVSKIY A, WANG C, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2021-5-10]. https://arxiv.org/abs/2004.10934v1.
|
25 |
LI R , WANG X D , WANG J , et al. SAR target recognition based on efficient fully convolutional attention block CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4005905.
|
26 |
WU S N, WANG K, OUYANG Y W. Study on small samples SAR image recognition detection method based on transfer CNN[C]//Proc. of the 3rd International Conference on Electronic Information Technology and Computer Engineering, 2019: 718-722.
|
27 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proc. of the Neural Information Processing Systems, 2017: 4077-4087.
|
28 |
HUANG H H, ZHANG F, ZHOU Y S, et al. High resolution SAR image synthesis with hierarchical generative adversarial networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 2782-2785.
|
29 |
LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the SAR in Big Data Era: Models, Methods and Applications, 2017.
|
30 |
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 9626-9635.
|
31 |
ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. [2021-5-10]. https://arxiv.org/abs/1904.07850v2.
|
32 |
NICOLAS C, FRANCISCO M, GABRIEL S, et al. End-to-end object detection with transformers[C]//Proc. of the European Conference on Computer Vision, 2020: 213-229.
|
33 |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]// Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
|
34 |
WANG Y Y , WANG C , ZHANG H , et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11 (7): 765.
doi: 10.3390/rs11070765
|
35 |
WEI S J , ZENG X F , QU Q Z , et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8, 120234- 120254.
doi: 10.1109/ACCESS.2020.3005861
|
36 |
MINAEE S , BOYKOV Y Y , PORIKLI F , et al. Image segmentation using deep learning: a survey[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2021,
doi: 10.1109/TPAMI.2021.3059968
|
37 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
38 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedicalimage segmentation[C]//Proc. of the Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
|
39 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
40 |
CHEN L , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
41 |
MILLETARI F, NAVAB N, AHMADI S. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proc. of the 4th International Conference on 3D Vision, 2016: 565-571.
|