系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1195-1201.doi: 10.12305/j.issn.1001-506X.2022.04.16

• 传感器与信号处理 • 上一篇    下一篇

基于语义分割实现的SAR图像舰船目标检测

陈冬*, 句彦伟   

  1. 南京电子技术研究所, 江苏 南京 210013
  • 收稿日期:2021-05-13 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 陈冬
  • 作者简介:陈冬(1997—), 男, 硕士研究生, 主要研究方向为SAR图像目标检测与识别|句彦伟(1978—), 男, 研究员级高级工程师, 博士, 主要研究方向为ISAR成像、图像处理与目标识别

Ship object detection SAR images based on semantic segmentation

Dong CHEN*, Yanwei JU   

  1. Nanjing Research Institute of Electronic Technology, Nanjing 210013, China
  • Received:2021-05-13 Online:2022-04-01 Published:2022-04-01
  • Contact: Dong CHEN

摘要:

基于深度学习实现的目标检测方法在自然图像中取得非常大的成功, 而将诸多方法运用于合成孔径雷达(synthetic aperture radar, SAR)图像舰船目标检测逐步成为新的趋势。如何将已有方法改进并与SAR图像的特点相结合完成特定的检测任务, 已经成为当前主要的研究方向。不同于当前已有方法, 本文对存在的深度学习SAR图像舰船目标检测方法进行了再思考, 提出了基于语义分割实现的检测、分割一体化方法。通过语义分割实现的检测方式能够有效地避免当前诸多检测网络的复杂解码过程, 具有生成的预测框更加贴合目标、精度以及召回率更高等特点。该方法虽属于无锚框检测, 但实验结果表明, 达到了双阶段检测效果, 且具有更加精细化的分割结果, 适用于复杂背景检测与分割问题。

关键词: 合成孔径雷达, 语义分割, 舰船检测, 卷积神经网络, 深度学习

Abstract:

Object detection methods based on deep learning have achieved outstanding success in natural images, and the application of many methods to ship detection in synthetic aperture radar (SAR) images has gradually become a new trend. How to improve the existing methods and combine them with the characteristics of SAR images to complete specific detection tasks has become the main research direction at present. Different from the current detection methods, this paper rethinks the existing deep learning-based SAR image ship detection algorithms and proposes an integrated detection and segmentation method based on semantic segmentation. This detection method realized by semantic segmentation can effectively avoid the complicated decoding process of many detection networks. Besides, it has the characteristics of predicted bounding boxes generated in the prediction stage that are more suitable for targets, and has a higher precision and recall rate compared with other methods. Although this method belongs to the anchor-free detection field, the experimental results show it achieves a two-stage detection effect, and has more refined segmentation results, which is suitable for complicated background noise-based detection and segmentation.

Key words: synthetic aperture radar (SAR), semantic segmentation, ship detection, convolutional neural network (CNN), deep learning

中图分类号: