系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1158-1165.doi: 10.12305/j.issn.1001-506X.2022.04.11
曹鹏宇1,*, 杨承志1, 石礼盟2, 吴宏超1
收稿日期:
2021-01-08
出版日期:
2022-04-01
发布日期:
2022-04-01
通讯作者:
曹鹏宇
作者简介:
曹鹏宇(1997—), 男, 硕士研究生, 主要研究方向为认知侦察、深度学习|杨承志(1974—), 男, 教授, 博士, 主要研究方向为认知电子战、信息感知与对抗|石礼盟(1995—), 男, 助理工程师, 硕士, 主要研究方向为雷达信号识别、深度学习|吴宏超(1982—), 男, 讲师, 硕士, 主要研究方向为雷达信号识别、深度学习
基金资助:
Pengyu CAO1,*, Chengzhi YANG1, Limeng SHI2, Hongchao WU1
Received:
2021-01-08
Online:
2022-04-01
Published:
2022-04-01
Contact:
Pengyu CAO
摘要:
针对雷达实际侦察过程中会侦收到大量样本库中所没有的未知雷达信号, 设计了一种基于粒子群优化的具有噪声的密度聚类算法和半监督条件生成对抗网络的单脉冲未知雷达信号处理方法。通过粒子群优化算法得到具有噪声的密度聚类算法的最优输入参数后, 对未知雷达信号进行聚类, 在聚类算法输出的簇中采用距离筛选算法筛选出更为可信的样本将其扩展到雷达样本库中。当加入的未知雷达信号的种类过多时, 需对特征提取网络进行扩展训练, 而样本库中数据量较小, 难以支持特征提取网络进行有效扩展训练。因此, 借鉴了半监督条件生成对抗网络实现小样本情况下未知信号的训练和分类识别。仿真结果表明, 本方法的未知雷达信号识别效果表现良好。
中图分类号:
曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165.
Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. Unknown radar signal processing based on PSO-DBSCAN and SCGAN[J]. Systems Engineering and Electronics, 2022, 44(4): 1158-1165.
1 |
WANG Q S , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076 |
2 |
XU X , WANG W , WANG J H . A three-way incremental-learning algorithm for radar emitter identification[J]. Frontiers of Computer Science, 2016, 10 (4): 673- 688.
doi: 10.1007/s11704-015-4457-7 |
3 |
ZHANG C H , HAN Y T , ZHANG P , et al. Research on modern radar emitter modell ing technique under complex electromagnetic environment[J]. The Journal of Engineering, 2019, 2019 (20): 7134- 7138.
doi: 10.1049/joe.2019.0579 |
5 | SHEN J H , HUANG J C , ZHU Y C , et al. Overview of radar signal fast recognition[J]. Electronic Information Warfare Technology, 2017, 32 (5): 5- 10. |
6 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5 |
7 |
LI L , JI H B . Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation[J]. Expert Systems with Applications, 2011, 38 (3): 2140- 2147.
doi: 10.1016/j.eswa.2010.07.155 |
8 | WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, 2019 (7): 1- 13. |
9 | PETROV N , JORDANOV I , ROE J . Radar emitter signals recognition and classification with feedforward networks[J]. Procedia Computer Science, 2013, 2 (2): 1192- 1200. |
10 |
YANG Z T , WU Z L , YIN Z D , et al. Hybrid radar emitter recognition based on rough K-means classifier and relevance vector machine[J]. Sensors, 2013, 13 (1): 848- 864.
doi: 10.3390/s130100848 |
11 |
YANG Z T , QIU W , SUN H J , et al. Robust radar emitter recognition based on the three-dimensional distribution feature and transfer learning[J]. Sensors, 2016, 16 (3): 289- 302.
doi: 10.3390/s16030289 |
12 |
VISHAL P , PAJESH K S . Convolutional support vector machines for speech recognition[J]. International Journal of Speech Technology, 2019, 22 (3): 601- 609.
doi: 10.1007/s10772-018-09584-4 |
13 |
LIU N B , XU Y N , TIAN Y H , et al. Background classification method based on deep learning for intelligent automotive radar target detection[J]. Future Generation Computer Systems, 2019, 94, 524- 535.
doi: 10.1016/j.future.2018.11.036 |
14 | SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines[C]//Proc. of the 12th International Conference on Artificial Intelligence and Statistics, 2009: 448-445. |
15 | JEFF H . Ian Goodfellow, Yoshua Bengio, and Aaron Courville: deep learning[J]. Genetic Programming & Evolvable Machines, 2018, 19, 305- 307. |
16 |
WANG S H , PHILLIPS P , SUI Y , et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling[J]. Journal of Medical Systems, 2018, 42 (5): 85.
doi: 10.1007/s10916-018-0932-7 |
17 |
YUAN X Y , HE P , ZHU Q L , et al. Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017 |
18 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision & Pattern Recognition, 2016. |
19 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proc. of the IEEE International Conference on Compwter Vision, 2015. |
20 |
O'SHEA T J , ROY T , CLANCY T C . Over the air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
21 | 张怡霄, 郭文普, 康凯, 等. 基于数据场联合PRI变换与聚类的雷达信号分选[J]. 系统工程与电子技术, 2019, 41 (7): 1509- 1515. |
ZHANG Y X , GUO W P , KANG K , et al. Radar signal sorting method based on data field combined PRI transform and clustering[J]. Systems Engineering and Electronics, 2019, 41 (7): 1509- 1515. | |
22 | 张怡霄, 郭文普, 康凯, 等. 基于聚类和时序相关的重点雷达信号快速识别[J]. 系统工程与电子技术, 2020, 42 (3): 597- 602. |
ZHANG Y X , GUO W P , KANG K , et al. Key radar signal fast recognition method based on clustering and time-series correlation[J]. Systems Engineering and Electronics, 2020, 42 (3): 597- 602. | |
23 | 朱克凡, 王杰贵. 小样本条件下SCGAN+CNN低分辨雷达目标一步识别算法[J]. 系统工程与电子技术, 2020, 42 (1): 67- 75. |
ZHU K F , WANG J G . Low-resolution radar target one-step recognition algorithm based on SCGAN+CNN with a limited training data[J]. Systems Engineering and Electronics, 2020, 42 (1): 67- 75. | |
24 |
秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006 |
QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462.
doi: 10.3969/j.issn.0372-2112.2020.03.006 |
|
25 |
石礼盟, 杨承志, 吴宏超. 基于深层残差网络和三元组损失的雷达信号识别方法[J]. 系统工程与电子技术, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
SHI L M , YANG C Z , WU H C . Radar signal recognition method based on deep residual network and triplet loss[J]. Systems Engineering and Electronics, 2020, 42 (11): 2506- 2512.
doi: 10.3969/j.issn.1001-506X.2020.11.12 |
|
26 |
GU L L , LIU Y , ZHEN J Q . Optimization of PSO algorithm based on adaptive inertia weight and escape strategy[J]. Journal of Physics: Conference Series, 2020, 1486 (3): 32033- 32039.
doi: 10.1088/1742-6596/1486/3/032033 |
27 |
ZHAN L W , LI C W . A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating[J]. Measurement Science and Technology, 2017, 28 (2): 025004.
doi: 10.1088/1361-6501/aa506d |
28 |
HOU J , GAO H J , LI X L . DSets-DBSCAN: a parameter-free clustering algorithm[J]. IEEE Trans.on Image Processing, 2016, 25 (7): 3182- 3193.
doi: 10.1109/TIP.2016.2559803 |
29 |
IENCO D , BORDOGNA G . Fuzzy extensions of the DBSCAN clustering algorithm[J]. Soft Computing, 2018, 22 (5): 1719- 1730.
doi: 10.1007/s00500-016-2435-0 |
30 |
SHEN J B , HAO X P , LIANG Z Y , et al. Real-time superpixel segmentation by DBSCAN clustering algorithm[J]. IEEE Trans.on Image Processing, 2016, 25 (12): 5933- 5942.
doi: 10.1109/TIP.2016.2616302 |
31 |
SCITOVSKI R , SABO K . DBSCAN-like clustering method for various data densities[J]. Pattern Analysis and Applications, 2020, 23 (2): 541- 554.
doi: 10.1007/s10044-019-00809-z |
32 |
GALAN S F . Comparative evaluation of region query strategies for DBSCAN clustering[J]. Information Sciences, 2019, 502, 76- 90.
doi: 10.1016/j.ins.2019.06.036 |
33 |
BRYANT A C , CIOS K J , BRYANT A , et al. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE Trans.on Knowledge and Data Engineering, 2018, 30 (6): 1109- 1121.
doi: 10.1109/TKDE.2017.2787640 |
34 | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43 (3): 321- 332. |
WANG K F , GOU C , DUAN Y J . Generative adversarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43 (3): 321- 332. |
[1] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[2] | 李君龙, 李松洲, 周荻. 一种多约束条件下的三脉冲交会优化设计方法[J]. 系统工程与电子技术, 2022, 44(8): 2612-2620. |
[3] | 杜思予, 全英汇, 沙明辉, 方文, 邢孟道. 基于进化PSO算法的稀疏捷变频雷达波形优化[J]. 系统工程与电子技术, 2022, 44(3): 834-840. |
[4] | 石宸睿, 田露, 徐湛, 职如昕, 陈晋辉. 基于PSO-BP的应急通信感知装备效能评价方法[J]. 系统工程与电子技术, 2022, 44(11): 3455-3462. |
[5] | 路复宇, 童宁宁, 冯为可, 万鹏程. 自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术, 2022, 44(11): 3470-3476. |
[6] | 李浩洋, 向建军, 彭芳, 王帅, 李志军. 基于粒子群优化的波束空间广义旁瓣相消算法[J]. 系统工程与电子技术, 2022, 44(10): 3037-3045. |
[7] | 谢磊, 丁达理, 魏政磊, 汤安迪, 张鹏. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658. |
[8] | 王坤, 侯树贤, 王力. 基于自适应变异PSO-SVM的APU性能参数预测模型[J]. 系统工程与电子技术, 2021, 43(2): 526-536. |
[9] | 赵帅, 刘松涛, 汪慧阳. 基于PSO-CNN的LPI雷达波形识别算法[J]. 系统工程与电子技术, 2021, 43(12): 3552-3563. |
[10] | 王晓海, 孟秀云, 李传旭. 基于MPC的无人机航迹跟踪控制器设计[J]. 系统工程与电子技术, 2021, 43(1): 191-198. |
[11] | 李玖阳, 胡敏, 王许煜, 徐家辉, 李菲菲. 基于ALPSO算法的低轨卫星小推力离轨最优控制方法[J]. 系统工程与电子技术, 2021, 43(1): 199-207. |
[12] | 何春蓉, 朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43(1): 258-266. |
[13] | 马愈昭, 王强强, 王瑞松, 熊兴隆. 基于SVD和MPSO-SVM的光纤周界[J]. 系统工程与电子技术, 2020, 42(8): 1652-1661. |
[14] | 周璇, 何锋, 谷晓燕, 贾子睿, 熊华钢. 航电系统体系贡献率权重演化动态综合评估[J]. 系统工程与电子技术, 2020, 42(8): 1740-1750. |
[15] | 苏志刚, 陈欣然, 郝敬堂. 基于粒子群优化的圆阵列波束形成方法[J]. 系统工程与电子技术, 2020, 42(7): 1449-1454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||