系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1158-1165.doi: 10.12305/j.issn.1001-506X.2022.04.11

• 传感器与信号处理 • 上一篇    下一篇

基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法

曹鹏宇1,*, 杨承志1, 石礼盟2, 吴宏超1   

  1. 1. 空军航空大学航空作战勤务学院, 吉林 长春 130022
    2. 中国人民解放军93671部队, 河南 南阳 474350
  • 收稿日期:2021-01-08 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 曹鹏宇
  • 作者简介:曹鹏宇(1997—), 男, 硕士研究生, 主要研究方向为认知侦察、深度学习|杨承志(1974—), 男, 教授, 博士, 主要研究方向为认知电子战、信息感知与对抗|石礼盟(1995—), 男, 助理工程师, 硕士, 主要研究方向为雷达信号识别、深度学习|吴宏超(1982—), 男, 讲师, 硕士, 主要研究方向为雷达信号识别、深度学习
  • 基金资助:
    国防科技卓越青年基金(315090303)

Unknown radar signal processing based on PSO-DBSCAN and SCGAN

Pengyu CAO1,*, Chengzhi YANG1, Limeng SHI2, Hongchao WU1   

  1. 1. School of Air Operations and Services, Aviation University of Air Force, Changchun 130022, China
    2. Unit 93671 of the PLA, Nanyang 474350, China
  • Received:2021-01-08 Online:2022-04-01 Published:2022-04-01
  • Contact: Pengyu CAO

摘要:

针对雷达实际侦察过程中会侦收到大量样本库中所没有的未知雷达信号, 设计了一种基于粒子群优化的具有噪声的密度聚类算法和半监督条件生成对抗网络的单脉冲未知雷达信号处理方法。通过粒子群优化算法得到具有噪声的密度聚类算法的最优输入参数后, 对未知雷达信号进行聚类, 在聚类算法输出的簇中采用距离筛选算法筛选出更为可信的样本将其扩展到雷达样本库中。当加入的未知雷达信号的种类过多时, 需对特征提取网络进行扩展训练, 而样本库中数据量较小, 难以支持特征提取网络进行有效扩展训练。因此, 借鉴了半监督条件生成对抗网络实现小样本情况下未知信号的训练和分类识别。仿真结果表明, 本方法的未知雷达信号识别效果表现良好。

关键词: 未知雷达信号识别, 粒子群优化, 具有噪声的密度聚类算法, 距离筛选算法, 半监督条件生成对抗网络

Abstract:

Aiming at the actual radar reconnaissance process that will receive unknown radar signals that are not available in a large number of sample libraries, this paper designs density based spatial clustering of applications with noise based on particle swarm optimization (PSO-DBSCAN) and a semi-supervised conditional generation adversarial network (SCGAN) to process the monopulse unknown radar signals. First, the optimal input parameters of the noisy density clustering algorithm are obtained through the particle swarm optimization (PSO), and then the unknown radar signals are clustered, and the distance filtering algorithm is used to filter out more credible samples from the clusters output by the clustering algorithm, which are extended to the radar sample library. When too many types of unknown radar signals are added, the feature extraction network needs to be expanded and trained, and the small amount of data in the sample library is difficult to support the feature extraction network for effective expansion training. Therefore, a semi-supervised conditional generation confrontation network is designed to realize the training and classification of unknown signals in the case of small samples. The simulation results show that this method performs well in the recognition of unknown radar signals.

Key words: unknown radar signal recognition, particle swarm optimization (PSO), density-based spatial clustering of applications with noise (DBSCAN), distance filtering algorithm, semi-supervised conditional generation adversarial network (SCGAN)

中图分类号: