系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (4): 1148-1157.doi: 10.12305/j.issn.1001-506X.2022.04.10

• 传感器与信号处理 • 上一篇    下一篇

基于多分辨率显著性滤波的微动信号增强方法

唐明磊, 张文鹏*, 姜卫东, 高勋章   

  1. 国防科技大学电子科学学院, 湖南 长沙 410000
  • 收稿日期:2021-02-05 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 张文鹏
  • 作者简介:唐明磊(1994—), 男, 硕士研究生, 主要研究方向为微动信号处理|张文鹏(1989—), 男, 讲师, 博士, 主要研究方向为雷达信号处理、雷达特征提取与识别|姜卫东(1968—), 男, 研究员, 博士, 主要研究方向为雷达系统、雷达信号处理、雷达目标识别|高勋章(1972—), 男, 研究员, 博士, 主要研究方向为自动目标识别、雷达信号处理
  • 基金资助:
    国家自然科学基金青年科学基金(61901487);创新研究群体项目(61921001)

Micro-motion signal enhancement method based on multi-resolution saliency filtering

Minglei TANG, Wenpeng ZHANG*, Weidong JIANG, Xunzhang GAO   

  1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410000, China
  • Received:2021-02-05 Online:2022-04-01 Published:2022-04-01
  • Contact: Wenpeng ZHANG

摘要:

微动信号是典型的非平稳信号, 时频分析能够获得微动信号的联合时间-频率分布图像, 是微动信号分析的主要工具之一, 良好的时频图像质量能保证后续特征提取和参数估计的准确性。然而在实际场景中, 时频图像通常受到噪声污染, 使得微动信号难以分辨, 严重制约了后续特征提取和参数估计。根据显著性检测和图像金字塔的基本原理, 本文在多分辨率表示图像上分别计算显著性并滤波, 最后进行加权融合获得增强的时频图像, 有效抑制了噪声, 提升了低信噪比(signal to noise ratio, SNR)下时频图像的质量和微动信号的显著性。实验结果表明, 对于仿真信号以及暗室测量信号, 在-7~7 dB SNR下, 采用该方法均能显著提升时频图像质量, 且-3 dB以下时能大幅提高周期估计的准确率, 是一种有效的微动信号增强方法。

关键词: 微动, 信号增强, 多分辨率, 显著性

Abstract:

Micro-motion signal is a typical non-stationary signal. Time-frequency analysis can obtain the joint time-frequency distribution image of micro-motion signal, and it is one of the main tools for micro-motion signal analysis. Good time-frequency image quality can ensure the accuracy of the subsequent feature extraction and parameter estimation. However, in the actual scene, time-frequency images are usually polluted by noise, which makes it difficult to distinguish micro-motion signals, which seriously restricts the subsequent feature extraction and parameter estimation. According to the basic principles of saliency detection and image pyramid, we compute the saliency on the multi-resolution images separately, and then perform the filtering process. Finally, we perform weighted fusion of them to obtain the enhanced time-frequency image. This method effectively suppresses noise, improves the quality of time-frequency images and the saliency of micro-motion signals under low signal to noise ratio (SNR). Experimental results show that for simulated signals as well as darkroom measured signals, the proposed method can significantly improve the time-frequency image quality when the SNR is from -7 dB to 7 dB, and the accuracy of period estimation can be greatly improved when the SNR is below -3 dB. Therefore, it is an effective method for micro-motion signal enhancement.

Key words: micro-motion, signal enhancement, multi-resolution, saliency

中图分类号: