1 |
CHEN V C , LI F , HO S S , et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans.on Aerospace & Electronic Systems, 2006, 42 (1): 2- 21.
|
2 |
李康乐. 雷达目标微动特征提取与估计技术研究[D]. 长沙: 国防科学技术大学, 2010.
|
|
LI K L. Research on feature extraction and parameters estimation for radar targets with micro-motions[D]. Changsha: National University of Defense Technology, 2010.
|
3 |
ZHANG W P , LI K L , JIANG W D . Parameter estimation of radar targets with macro-motion and micro-motion based on circular correlation coefficients[J]. IEEE Signal Processing Letters, 2015, 22 (5): 633- 637.
doi: 10.1109/LSP.2014.2365547
|
4 |
赵若冰. 雷达目标的微多普勒特征建模与分析技术研究[D]. 南京: 南京理工大学, 2017.
|
|
ZHAO R B. Research on micro-Doppler feature modeling and analysis technology of radar target[D]. Nanjing: Nanjing University of Science and Technology, 2017.
|
5 |
林襄. 雷达目标多分量微动信号参数估计与分离技术研究[D]. 长沙: 国防科学技术大学, 2016.
|
|
LIN X. Research on radar multi-component micro-Doppler signal decomposition and parameter estimation[D]. Changsha: National University of Defense Technology, 2016.
|
6 |
李昆, 朱卫纲. 利用生成对抗网络的时频图像去噪和增强技术[J]. 电讯技术, 2020, 60 (5): 517- 523.
|
|
LI K , ZHU W G . Time-frequency image denoising and enhancement processing based on generative adversarial network[J]. Telecommunication Engineering, 2020, 60 (5): 517- 523.
|
7 |
TORRES L, FRERY A C. SAR image despeckling algorithms using stochastic distances and nonlocal means[EB/OL]. [2021-02-01]. https//arxiv. org/abs/1308.4338v1.
|
8 |
HEO Y C , KIM K , LEE Y . Image denoising using non-local means (NLM) approach in magnetic resonance (MR) imaging: a systematic review[J]. Applied Sciences-Basel, 2020, 10 (20): 7028.
doi: 10.3390/app10207028
|
9 |
CHEN H O , KONG N S P , IBRAHIM H . Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Trans.on Consumer Electronics, 2009, 55 (4): 2072- 2080.
doi: 10.1109/TCE.2009.5373771
|
10 |
RODRIGUES C , PEIXOTO Z M A , FERREIRA F M F . Ultrasound image denoising using wavelet thresholding methods in association with the bilateral filter[J]. IEEE Latin America Transactions, 2019, 17 (11): 1800- 1807.
doi: 10.1109/TLA.2019.8986417
|
11 |
PURANIKMATH S S , KALIYAPERUMAL V . Enhancement of SAR images using curvelet with controlled shrinking technique[J]. Remote Sensing Letters, 2016, 7 (1): 21- 30.
|
12 |
LIU S Q , SHI M Z , HU S H , et al. Synthetic aperture radar image denoising based on Shearlet transform using the context-based model[J]. Physical Communication, 2014, 13 (Part C): 221- 229.
|
13 |
LI Y . A multifeature extraction method using deep residual network for MR image denoising[J]. Computational & Mathematical Methods in Medicine, 2020,
doi: 10.1155/2020/8823861
|
14 |
ZHANG Z H , LIU Y P , LIU J N , et al. AMP-net: denoising-based deep unfolding for compressive image sensing[J]. IEEE Trans.on Image Processing, 2021, 30 (1): 1487- 1500.
|
15 |
ZHANG Q , WU Y , ZHAO W , et al. Multiple-scale salient-region detection of SAR image based on Gamma distribution and local intensity variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (8): 1370- 1374.
doi: 10.1109/LGRS.2013.2293508
|
16 |
TU S , SU Y . Fast and accurate target detection based on multiscale saliency and active contour model for high-resolution SAR images[J]. IEEE Trans.on Geoscience & Remote Sensing, 2016, 54 (10): 5729- 5744.
|
17 |
WANG H P , XU F , CHEN S S . Saliency detector for SAR images based on pattern recurrence[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9 (7): 2891- 2900.
|
18 |
WANG S G , WANG M , YANG S Y , et al. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images[J]. IEEE Trans.on Geoscience & Remote Sensing, 2017, 55 (1): 351- 362.
|
19 |
NI W P , MA L , YAN W D , et al. Background context-aware-based SAR image saliency detection[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (9): 1392- 1396.
|