1 |
WANG N , LI Z , MONTENBRUCK O , et al. Quality assessment of GPS, Galileo and BeiDou 2/3 satellite broadcast group delays[J]. Advances in Space Research, 2019, 64 (9): 1764- 1779.
doi: 10.1016/j.asr.2019.07.029
|
2 |
BEER S , WANNINGER L , HEBELBARTH A . Galileo and GLONASS group delay variations[J]. GPS Solutions, 2020, 24 (1): 23.
doi: 10.1007/s10291-019-0939-7
|
3 |
BEER S , WANNINGER L . Temporal stability of GPS transmitter group delay variations[J]. Sensors, 2018, 18 (6): 1744.
doi: 10.3390/s18061744
|
4 |
ZHANG Y Z , CHEN J P , GONG X Q , et al. The update of BDS-2 TGD and its impact on positioning[J]. Advances in Space Research, 2020, 65 (11): 2645- 2661.
doi: 10.1016/j.asr.2020.03.011
|
5 |
DAI P , XING J , GE Y , et al. The effect of bd-3 time group delay and differential code bias corrections on positioning[J]. Applied Sciences, 2021, 11 (1): 2076- 3417.
|
6 |
陈淑芳. 应用矢量网络分析仪测定变频器的群时延特性[J]. 时间频率学报, 2005, 28 (1): 54- 60.
doi: 10.3969/j.issn.1674-0637.2005.01.008
|
|
CHEN S F . Determing converter's group delay characteristic by vector network analyzer[J]. Journal of Time and Frequency, 2005, 28 (1): 54- 60.
doi: 10.3969/j.issn.1674-0637.2005.01.008
|
7 |
SATO Y , OGURA N , YAMAGUCHI Y , et al. Development of a sensor for dielectric constant measurements utilizing time-domain measurement with a vector network analyzer[J]. Measurement, 2021, 169, 108530.
doi: 10.1016/j.measurement.2020.108530
|
8 |
FARIDI F R , PREU S . Pulsed free space two-port photonic vector network analyzer with up to 2 THz bandwidth[J]. Optics Express, 2021, 29 (8): 12278- 12291.
doi: 10.1364/OE.418120
|
9 |
刘贵斌, 邹先立, 梁琪. 矢量网络分析仪的测量误差分析与测量校准方法[J]. 计量与测试技术, 2019, 46 (8): 113- 118.
|
|
LIU G B , ZOU X L , LIANG Q . Measurement errors analysis and measurement calibration methods of network analyzer[J]. Metrolog & Measurement Technique, 2019, 46 (8): 113- 118.
|
10 |
Agilent Technologies Incorporated. Understanding the fundamental principles of vector network analysis[EB/OL]. [2021-03-25]. https://www.jlab.org/uspas11/Reading/RF/HP%20Understanding%20the%20Fundamental%20Principles%20of%20Vector%20Network%20analysis.pdf.
|
11 |
杨丽. 一种基于傅里叶变换的时延测量方法及应用[J]. 通信技术, 2019, 52 (9): 2167- 2171.
doi: 10.3969/j.issn.1002-0802.2019.09.017
|
|
YANG L . A time delay measurement method based on Fourier transform and its application[J]. Communications Technology, 2019, 52 (9): 2167- 2171.
doi: 10.3969/j.issn.1002-0802.2019.09.017
|
12 |
肖志斌. 高精度导航接收机的群时延建模、测量和校准技术[D]. 长沙: 国防科技大学, 2014.
|
|
XIAO Z B. Group delay modeling, measurement and calibration technology of high precision navigation receiver[D]. Changsha: University of National Defense Science and Technology, 2014.
|
13 |
LEICK A , RAPOPORT L , TATARNIKOV D . GPS satellite surveying[M]. Hoboken: John Wiley and Sons, 1995.
|
14 |
WANG J . An approach to GLONASS ambiguity resolution[J]. Journal of Geodesy, 2000, 74 (5): 421- 430.
doi: 10.1007/s001900000096
|
15 |
FELHAUER T. On the impact of front-end group delay variations on GLONASS pseudorange accuracy[C]//Proc. of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation, 1997: 1527-1532.
|
16 |
PRATT M , BURKE B , MISRA P . Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data[J]. Proceedings of ION GNSS, 1998, (1): 389- 398.
|
17 |
WANNINGER L . Carrier-phase inter frequency biases of GLONASS receivers[J]. Journal of Geodesy, 2007, 86 (2): 139- 148.
|
18 |
TIAN Y M , GE M R , NEITZEL F . Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS inter ambiguity resolution[J]. Journal of Geodesy, 2013, 89 (11): 1145- 1158.
|
19 |
RUAN R G , WEI Z Q . Between-satellite single-difference integer ambiguity resolution in GPS/GNSS network solutions[J]. Journal of Geodesy, 2019, 93 (9): 1367- 1379.
doi: 10.1007/s00190-019-01251-z
|
20 |
HATCH R . Instantaneous ambiguity resolution[J]. Kinematic Systems in Geodesy, Surveying, and Remote Sensing, 1991, 107 (8): 299- 308.
|
21 |
BARONI L , HELIO K K . Analysis of attitude determination methods using GPS carrier phase measurements[J]. Mathematical Problems in Engineering, 2012,
doi: 10.1155/2012/596396
|
22 |
KIM D, LANGLEY R. An optimized least-squares technique for improving ambiguity resolution and computational efficiency[C]//Proc. of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2000: 1579-1588.
|
23 |
WANG G C , LU J C . An algorithm for evaluating correctness of integer ambiguity calculated by LAMBDA method[J]. Telecommunication Engineering, 2020, 60 (6): 707- 712.
|
24 |
TEUNISSEN P J G . Success probability of integer GPS ambiguity rounding and bootstrapping[J]. Journal of Geodesy, 1998, 72 (10): 606- 612.
doi: 10.1007/s001900050199
|
25 |
DEDES G, GOAD C. Real-time cm-level GPS positioning of cutting blade and earth moving equipment[C]//Proc. of the National Technical Meeting of the ION, 1994.
|
26 |
ZVEREV A I . Handbook of filter synthesis[M]. Chicago: John Wiley & Sons, 1967.
|
27 |
朱向鹏, 刘涛, 王延光. GNSS接收机射频组件群时延特性对伪距测量影响的研究[C]//第九届中国卫星导航学术年会, 2018: 58-61.
|
|
ZHU X P, LIU T, WANG Y G. Research on the influence of group delay characteristics of radio frequency components of GNSS receiver on pseudo range measurement[C]//Proc. of the 9th China Satellite Navigation Academic Annual Conference, 2018: 58-61.
|
28 |
ZHU X W . A novel definition and measurement method of group delay and its application[J]. IEEE Trans.on Instrumentation and Measurement, 2009, 58 (1): 229- 233.
doi: 10.1109/TIM.2008.927197
|
29 |
BETZ J W. Effect of linear time-in variant distortions on RNSS code tracking accuracy[C]//Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 1636-1647.
|
30 |
ZHANG Y Z , WANG H , CHEN J P , et al. Calibration and impact of BeiDou satellite-dependent timing group delay bias[J]. Remote Sensing, 2020, 12 (1): 192- 208.
doi: 10.3390/rs12010192
|