| 1 | WANG N ,  LI Z ,  MONTENBRUCK O , et al.  Quality assessment of GPS, Galileo and BeiDou 2/3 satellite broadcast group delays[J]. Advances in Space Research, 2019, 64 (9): 1764- 1779. doi: 10.1016/j.asr.2019.07.029
 | 
																													
																						| 2 | BEER S ,  WANNINGER L ,  HEBELBARTH A .  Galileo and GLONASS group delay variations[J]. GPS Solutions, 2020, 24 (1): 23. doi: 10.1007/s10291-019-0939-7
 | 
																													
																						| 3 | BEER S ,  WANNINGER L .  Temporal stability of GPS transmitter group delay variations[J]. Sensors, 2018, 18 (6): 1744. doi: 10.3390/s18061744
 | 
																													
																						| 4 | ZHANG Y Z ,  CHEN J P ,  GONG X Q , et al.  The update of BDS-2 TGD and its impact on positioning[J]. Advances in Space Research, 2020, 65 (11): 2645- 2661. doi: 10.1016/j.asr.2020.03.011
 | 
																													
																						| 5 | DAI P ,  XING J ,  GE Y , et al.  The effect of bd-3 time group delay and differential code bias corrections on positioning[J]. Applied Sciences, 2021, 11 (1): 2076- 3417. | 
																													
																						| 6 | 陈淑芳.  应用矢量网络分析仪测定变频器的群时延特性[J]. 时间频率学报, 2005, 28 (1): 54- 60. doi: 10.3969/j.issn.1674-0637.2005.01.008
 | 
																													
																						|  | CHEN S F .  Determing converter's group delay characteristic by vector network analyzer[J]. Journal of Time and Frequency, 2005, 28 (1): 54- 60. doi: 10.3969/j.issn.1674-0637.2005.01.008
 | 
																													
																						| 7 | SATO Y ,  OGURA N ,  YAMAGUCHI Y , et al.  Development of a sensor for dielectric constant measurements utilizing time-domain measurement with a vector network analyzer[J]. Measurement, 2021, 169, 108530. doi: 10.1016/j.measurement.2020.108530
 | 
																													
																						| 8 | FARIDI F R ,  PREU S .  Pulsed free space two-port photonic vector network analyzer with up to 2 THz bandwidth[J]. Optics Express, 2021, 29 (8): 12278- 12291. doi: 10.1364/OE.418120
 | 
																													
																						| 9 | 刘贵斌, 邹先立, 梁琪.  矢量网络分析仪的测量误差分析与测量校准方法[J]. 计量与测试技术, 2019, 46 (8): 113- 118. | 
																													
																						|  | LIU G B ,  ZOU X L ,  LIANG Q .  Measurement errors analysis and measurement calibration methods of network analyzer[J]. Metrolog & Measurement Technique, 2019, 46 (8): 113- 118. | 
																													
																						| 10 | Agilent Technologies Incorporated. Understanding the fundamental principles of vector network analysis[EB/OL]. [2021-03-25]. https://www.jlab.org/uspas11/Reading/RF/HP%20Understanding%20the%20Fundamental%20Principles%20of%20Vector%20Network%20analysis.pdf. | 
																													
																						| 11 | 杨丽.  一种基于傅里叶变换的时延测量方法及应用[J]. 通信技术, 2019, 52 (9): 2167- 2171. doi: 10.3969/j.issn.1002-0802.2019.09.017
 | 
																													
																						|  | YANG L .  A time delay measurement method based on Fourier transform and its application[J]. Communications Technology, 2019, 52 (9): 2167- 2171. doi: 10.3969/j.issn.1002-0802.2019.09.017
 | 
																													
																						| 12 | 肖志斌. 高精度导航接收机的群时延建模、测量和校准技术[D]. 长沙: 国防科技大学, 2014. | 
																													
																						|  | XIAO Z B. Group delay modeling, measurement and calibration technology of high precision navigation receiver[D]. Changsha: University of National Defense Science and Technology, 2014. | 
																													
																						| 13 | LEICK A ,  RAPOPORT L ,  TATARNIKOV D .  GPS satellite surveying[M]. Hoboken: John Wiley and Sons, 1995. | 
																													
																						| 14 | WANG J .  An approach to GLONASS ambiguity resolution[J]. Journal of Geodesy, 2000, 74 (5): 421- 430. doi: 10.1007/s001900000096
 | 
																													
																						| 15 | FELHAUER T. On the impact of front-end group delay variations on GLONASS pseudorange accuracy[C]//Proc. of the 10th International Technical Meeting of the Satellite Division of the Institute of Navigation, 1997: 1527-1532. | 
																													
																						| 16 | PRATT M ,  BURKE B ,  MISRA P .  Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data[J]. Proceedings of ION GNSS, 1998, (1): 389- 398. | 
																													
																						| 17 | WANNINGER L .  Carrier-phase inter frequency biases of GLONASS receivers[J]. Journal of Geodesy, 2007, 86 (2): 139- 148. | 
																													
																						| 18 | TIAN Y M ,  GE M R ,  NEITZEL F .  Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS inter ambiguity resolution[J]. Journal of Geodesy, 2013, 89 (11): 1145- 1158. | 
																													
																						| 19 | RUAN R G ,  WEI Z Q .  Between-satellite single-difference integer ambiguity resolution in GPS/GNSS network solutions[J]. Journal of Geodesy, 2019, 93 (9): 1367- 1379. doi: 10.1007/s00190-019-01251-z
 | 
																													
																						| 20 | HATCH R .  Instantaneous ambiguity resolution[J]. Kinematic Systems in Geodesy, Surveying, and Remote Sensing, 1991, 107 (8): 299- 308. | 
																													
																						| 21 | BARONI L ,  HELIO K K .  Analysis of attitude determination methods using GPS carrier phase measurements[J]. Mathematical Problems in Engineering, 2012, doi: 10.1155/2012/596396
 | 
																													
																						| 22 | KIM D, LANGLEY R. An optimized least-squares technique for improving ambiguity resolution and computational efficiency[C]//Proc. of the 12th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2000: 1579-1588. | 
																													
																						| 23 | WANG G C ,  LU J C .  An algorithm for evaluating correctness of integer ambiguity calculated by LAMBDA method[J]. Telecommunication Engineering, 2020, 60 (6): 707- 712. | 
																													
																						| 24 | TEUNISSEN P J G .  Success probability of integer GPS ambiguity rounding and bootstrapping[J]. Journal of Geodesy, 1998, 72 (10): 606- 612. doi: 10.1007/s001900050199
 | 
																													
																						| 25 | DEDES G, GOAD C. Real-time cm-level GPS positioning of cutting blade and earth moving equipment[C]//Proc. of the National Technical Meeting of the ION, 1994. | 
																													
																						| 26 | ZVEREV A I .  Handbook of filter synthesis[M]. Chicago: John Wiley & Sons, 1967. | 
																													
																						| 27 | 朱向鹏, 刘涛, 王延光. GNSS接收机射频组件群时延特性对伪距测量影响的研究[C]//第九届中国卫星导航学术年会, 2018: 58-61. | 
																													
																						|  | ZHU X P, LIU T, WANG Y G. Research on the influence of group delay characteristics of radio frequency components of GNSS receiver on pseudo range measurement[C]//Proc. of the 9th China Satellite Navigation Academic Annual Conference, 2018: 58-61. | 
																													
																						| 28 | ZHU X W .  A novel definition and measurement method of group delay and its application[J]. IEEE Trans.on Instrumentation and Measurement, 2009, 58 (1): 229- 233. doi: 10.1109/TIM.2008.927197
 | 
																													
																						| 29 | BETZ J W. Effect of linear time-in variant distortions on RNSS code tracking accuracy[C]//Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation, 2002: 1636-1647. | 
																													
																						| 30 | ZHANG Y Z ,  WANG H ,  CHEN J P , et al.  Calibration and impact of BeiDou satellite-dependent timing group delay bias[J]. Remote Sensing, 2020, 12 (1): 192- 208. doi: 10.3390/rs12010192
 |