1 |
GANIN Y , USTINOVA E , AJAKAN H , et al. A remaining useful life prediction method with long-short term feature processing for aircraft engines[J]. Applied Soft Computing, 2020, 93, 106344.
doi: 10.1016/j.asoc.2020.106344
|
2 |
CARVALHO T P , SOARES F , VITA R , et al. A systematic literature review of machine learning methods applied to predictive maintenance[J]. Computers & Industrial Engineering, 2019, 137, 106024.
|
3 |
马奇友, 刘可薇, 杜坚, 等. 基于深度长短期记忆网络的发动机叶片剩余寿命预测[J]. 推进技术, 2021, 42 (8): 1888- 1897.
|
|
MA Q Y , LIU K W , DU J , et al. Prediction of residual life of engine blades based on deep short term memory network[J]. Journal of Propulsion Technology, 2021, 42 (8): 1888- 1897.
|
4 |
SNCHEZ S M , FRANGOPOL D M , PADGETT J , et al. Maintenance and operation of infrastructure systems: review[J]. Journal of Structural Engineering, 2016, 142 (9): F4016004.
|
5 |
WANG K S, WANG Y. How AI affects the future predictive maintenance: a primer of deep learning[C]//Proc. of the International Workshop of Advanced Manufacturing and Automation, 2018.
|
6 |
GOURIVEAU R , MEDJAHER K , ZERHOUNI N . From prognostics and health systems management to predictive maintenance[M]. London: Wiley, 2016.
|
7 |
NGUYEN K T P , MEDJAHER K . A new dynamic predictive maintenance framework using deep learning for failure prognostics[J]. Reliability Engineering & System Safety, 2019, 188, 251- 262.
|
8 |
YU W , KIM I Y , MECHEFSKE C . An improved similarity based prognostic algorithm for RUL estimation using an RNN auto encoder scheme[J]. Reliability Engineering & System Safety, 2020, 199, 106926.
|
9 |
XIA J , FENG Y W , LU C , et al. LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems[J]. Engineering Failure Analysis, 2021, 125, 105385.
doi: 10.1016/j.engfailanal.2021.105385
|
10 |
LEI Y G , LI N P , GONTARZ S , et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Trans.on Reliability, 2016, 65 (3): 1314- 1326.
doi: 10.1109/TR.2016.2570568
|
11 |
SI X S , WANG W B , HU C H , et al. Remaining useful life estimation-a review on the statistical data driven approaches[J]. European Journal Operational Research, 2011, 213 (1): 1- 14.
doi: 10.1016/j.ejor.2010.11.018
|
12 |
LIU Y C , HU X F , ZHANG W J . Remaining useful life prediction based on health index similarity[J]. Reliability Engineering & System Safety, 2019, 185, 502- 510.
|
13 |
ZHANG J J , WANG P , YAN R Q , et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems, 2018, 48, 78- 86.
doi: 10.1016/j.jmsy.2018.05.011
|
14 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
15 |
CHE C C , WANG H W , FU Q , et al. Combining multiple deep learning algorithms for prognostic and health management of aircraft[J]. Aerospace Science and Technology, 2019, 94, 105423.
doi: 10.1016/j.ast.2019.105423
|
16 |
TAMILSELVAN P , WANG P . Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115, 124- 135.
|
17 |
GUO L , LI N P , JIA F , et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240, 98- 109.
doi: 10.1016/j.neucom.2017.02.045
|
18 |
HINCHI A Z , TKIOUAT M . Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J]. Procedia Computer Science, 2018, 127, 123- 132.
doi: 10.1016/j.procs.2018.01.106
|
19 |
ALDULAIMI A , ZABIHI S , ASIF A , et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108, 186- 196.
doi: 10.1016/j.compind.2019.02.004
|
20 |
YUAN M, WU Y T, LIN L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//Proc. of the IEEE International Conference on Aircraft Utility Systems, 2016: 135-140.
|
21 |
张妍, 王村松, 陆宁云, 等. 基于退化特征相似性的航空发动机寿命预测[J]. 系统工程与电子技术, 2019, 41 (6): 1414- 1421.
|
|
ZHANG Y , WANG C S , LU N Y , et al. Aeroengine life prediction based on similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2019, 41 (6): 1414- 1421.
|
22 |
车畅畅, 王华伟, 倪晓梅, 等. 基于多尺度排列熵和长短时记忆神经网络的航空发动机剩余寿命预测[J]. 交通运输工程学报, 2019, 19 (5): 106- 114.
|
|
CHE C C , WANG H , NI X M , et al. Aero-engine remaining life prediction based on multi-scale permutation entropy and long-short-term memory neural network[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (5): 106- 114.
|
23 |
张永峰, 陆志强. 基于集成神经网络的剩余寿命预测[J]. 工程科学学报, 2020, 42 (10): 1372- 1380.
|
|
ZHANG Y F , LU Z Q . Remaining useful life prediction based on an integrated neural network[J]. Chinese Journal of Engineering, 2020, 42 (10): 1372- 1380.
|
24 |
ZHANG Y Z , XIONG R , HE H W , et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithiumion batteries[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (7): 5695- 5705.
doi: 10.1109/TVT.2018.2805189
|
25 |
SAXENA A, KAI G, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the International Conference on Prognostics and Health Management, 2008.
|
26 |
PEEL L. Data driven prognostics using a Kalman filter ensemble of neural network models[C]//Proc. of the International Conference on Prognostics and Health Management, 2008.
|
27 |
XIA T B , SONG Y , ZHENG Y , et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Compu-ters in Industry, 2020, 115, 103182.
doi: 10.1016/j.compind.2019.103182
|
28 |
ZHANG B , ZHANG S H , LI W H . Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry, 2019, 106, 14- 29.
doi: 10.1016/j.compind.2018.12.016
|
29 |
VERSTRAETE D , DROGUETT E , MODARRES M . A deep adversarial approach based on multi-sensor fusion for semi- supervised remaining useful life prognostics[J]. Sensors, 2020, 20 (1): 176- 186.
|