1 |
SILVA V D . Mechanics and strength of materials[M]. Berlin: Springer, 2006.
|
2 |
ABE F , KERN T U , VISWANATHAN R . Creep-resistant steels[M]. Cambridge: Woodhead Publishing, 2008.
|
3 |
朱麟. 高铬耐热钢高温蠕变行为及寿命预测[D]. 西安: 西北大学, 2019.
|
|
ZHU L. Creep behavior and life prediction of high chromium hear resistant steel atelevated temperature[D]. Xi'an: Northwestern University, 2019.
|
4 |
HOLZER I , KOZESCHNIK E , CERJAK H . New approach to predict the long-term creep behaviour and evolution of precipitate back-stress of 9%~12% chromium steels[J]. Transactions of the Indian Institute of Metals, 2010, 63 (3): 137- 143.
|
5 |
LAESON F R , MILLER J . A time-temperature relationship for rupture and creep stress[J]. Transactions of the ASM, 1952, 74 (5): 765- 775.
|
6 |
EVANS M . A new statistical framework for the determination of safe creep life using the theta projection technique[J]. Journal of Materials Science, 2012, 47 (6): 2770- 2781.
doi: 10.1007/s10853-011-6106-3
|
7 |
EVANS M . Statistical properties of the failure time distribution for 12Cr12Mo14V steels[J]. Journal of Materials Processing Technology, 1995, 54 (4): 171- 180.
|
8 |
ZHAO J , XING L , HAI T M . Creep damage model based on Z-parameter and confidence level[J]. Journal of Dalian University of Technology, 2008, 48 (6): 825- 829.
|
9 |
KIM W G , PARK J Y , KIM S J , et al. Reliability assessment of creep rupture life for Gr.91 steel[J]. Materials and Design, 2013, 51, 1045- 1051.
doi: 10.1016/j.matdes.2013.05.013
|
10 |
ZHANG C Y , WEI J S , WANG Z , et al. Creep-based reliability evaluation of turbine blade-tip clearance with novel neural network regression[J]. Materials, 2019, 12 (21): 3552- 3572.
doi: 10.3390/ma12213552
|
11 |
JIANG C , BAI Y C , HAN X , et al. An efficient reliability-based optimization method for uncertain structures based on non-probability interval model[J]. Computers Materials & Continua, 2010, 18 (1): 21- 42.
|
12 |
LV H , YANG K , HUANG X T , et al. Design optimization of hybrid uncertain structures with fuzzy-boundary interval variables[J]. International Journal of Mechanics and Materials in Design, 2021, 17 (1): 201- 224.
doi: 10.1007/s10999-020-09523-9
|
13 |
WANG W X , XUE H , GAO H S . An effective evidence theory-based reliability analysis algorithm for structures with epistemic uncertainty[J]. Quality and Reliability Engineering International, 2020, 37 (12): 841- 855.
|
14 |
SONG L F , QIU Z P . Non-probability reliability optimization design for structures with fuzzy and interval variables[J]. Engineering Mechanics, 2013, 30 (6): 36- 45.
|
15 |
YU H P , ZHAO Y , MO L . Fuzzy reliability assessment of safety instrumented systems accounting for common cause fai-lure[J]. IEEE Access, 2020, 8, 135371- 135382.
doi: 10.1109/ACCESS.2020.3010878
|
16 |
LIU B D . Uncertainty theory[M]. 2nd ed Berlin: Springe, 2007.
|
17 |
GHAFFARI H A , LIO W C . Network data envelopment analy- sis in uncertain environment[J]. Computers & Industrial En-gineering, 2020, 148, 106657- 106667.
|
18 |
ZHANG B, SANG Z, XUE Y Q, et al. Research on optimization of customized bus routes based on uncertainty theory[EB/OL]. [2021-06-30]. https://doi.org/10.1155/2021/6691299.
|
19 |
LI X Y , CHEN W B , LI F R , et al. Reliability evaluation with limited and censored time-to-failure data based on uncertainty distributions[J]. Applied Mathematical Modelling, 2021, 94 (1): 2301- 2314.
|
20 |
KANG R , ZHANG Q Y , ZENG Z G , et al. Measuring reliability under epistemic uncertainty: review on non-probabilistic reliability metrics[J]. Chinese Journal of Aeronautics, 2016, 29 (3): 571- 579.
doi: 10.1016/j.cja.2016.04.004
|
21 |
康锐. 确信可靠性理论与方法[M]. 北京: 国防工业出版社, 2020.
|
|
KANG R . Belief reliability: theory and methodology[M]. Beijing: National Defense Industry Press, 2020.
|
22 |
ZENG Z G , KANG R . Uncertainty theory as a basis for belief reliability[J]. Information Sciences: An International Journal, 2018, 36 (12): 486- 502.
|
23 |
ZHANG Q Y , KANG R , WEN M L . Belief reliability for uncertain random systems[J]. IEEE Trans.on Fuzzy Systems, 2018, 26 (6): 3605- 3614.
doi: 10.1109/TFUZZ.2018.2838560
|
24 |
于格, 康锐, 林焱辉, 等. 基于确信可靠度的齿轮可靠性建模与分析[J]. 系统工程与电子技术, 2019, 41 (10): 2385- 2391.
doi: 10.3969/j.issn.1001-506X.2019.10.31
|
|
YU G , KANG R , LIN Y H , et al. Reliability modeling and analysis of gear based on belief reliability[J]. Systems Engineering and Electronics, 2019, 41 (10): 2385- 2391.
doi: 10.3969/j.issn.1001-506X.2019.10.31
|
25 |
王浩伟, 康锐. 基于不确定理论的退化数据分析方法[J]. 系统工程与电子技术, 2020, 42 (12): 2924- 2930.
doi: 10.3969/j.issn.1001-506X.2020.12.31
|
|
WANG H W , KANG R . Method of analyzing degradation data based on the uncertainty theory[J]. Systems Engineering and Electronics, 2020, 42 (12): 2924- 2930.
doi: 10.3969/j.issn.1001-506X.2020.12.31
|
26 |
ZU T P , KANG R , WEN M L , et al. α -S-N curve: a novel S-N curve modeling method under small-sample test data using uncertainty theory[J]. International Journal of Fatigue, 2020, 139, 105725- 105735.
doi: 10.1016/j.ijfatigue.2020.105725
|
27 |
LI X Y , TAO Z , WU J P , et al. Uncertainty theory based relia- bility modeling for fatigue[J]. Engineering Failure Analysis, 2021, 119, 104931- 104949.
doi: 10.1016/j.engfailanal.2020.104931
|
28 |
LIU B D . Uncertainty theory: a branch of mathematics for mode-ling human uncertainty[M]. Berlin: Springer, 2010.
|
29 |
ZHANG J T , ZHANG Q Y , KANG R . Reliability is a science: a philosophical analysis of its validity[J]. Applied Stochastic Models in Business and Industry, 2019, 35 (2): 1654- 1663.
|
30 |
BETTEN J . Creep mechanics[M]. Berlin: Springer, 2002.
|
31 |
LIO W C , LIU B D . Uncertain maximum likelihood estimation with application to uncertain regression analysis[J]. Soft Computing, 2020, 24 (4): 322- 334.
doi: 10.1007/s00500-020-04951-3
|
32 |
朱森第, 方向威, 吴民达, 等. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1995.
|
|
ZHU S D , FANG X W , WU M D , et al. Mechanical enginee-ring material performance data manual[M]. Beijing: Machine Press, 1995.
|