1 |
WEI W , MENDEL J . Maximum-likelihood classification for digi- tal amplitude-phase modulations[J]. IEEE Trans.on Communications, 2000, 48 (2): 189- 193.
doi: 10.1109/26.823550
|
2 |
HAMEED F , DOBRE O , POPESCU D . On the likelihood-based approach to modulation classification[J]. IEEE Trans.on Wireless Communications, 2009, 8 (12): 5884- 5892.
doi: 10.1109/TWC.2009.12.080883
|
3 |
RAMEZANI A , KIM I , KIM D , et al. Likelihood-based modulation classification for multiple-antenna receiver[J]. IEEE Trans.on Communications, 2013, 61 (9): 3816- 3829.
doi: 10.1109/TCOMM.2013.073113.121001
|
4 |
HAZAR M , ODABASIOGLU N , ENSARI T , et al. Perfor-mance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels[J]. Neural Computer, 2018, 29 (9): 351- 360.
doi: 10.1007/s00521-017-3040-6
|
5 |
HAN L B , GAO F F , LI Z , et al. Low complexity automatic modulation classification based on order-statistics[J]. IEEE Trans.on Wireless Communications, 2017, 16 (1): 400- 411.
doi: 10.1109/TWC.2016.2623716
|
6 |
袁莉芬, 宁暑光, 何怡刚, 等. 基于高阶累积量特征学习的调制识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 2122- 2131.
|
|
YUAN L F , NING S G , HE Y G , et al. Modulation recognition method based on high-order cumulant feature learning[J]. Systems Engineering and Electronics, 2019, 41 (9): 2122- 2131.
|
7 |
XIE W W , HU S , YU C , et al. Deep learning in digital modulation recognition using high order cumulants[J]. IEEE Access, 2019, 7, 63760- 63766.
doi: 10.1109/ACCESS.2019.2916833
|
8 |
JIN S S, LIN Y, WANG H. Automatic modulation recognition of digital signals based on Fisherface[C]//Proc. of the IEEE International Conference on Software Quality, Reliability and Security Companion, 2017: 216-220.
|
9 |
ZHAO H N, ZHOU Y Q, SUN B, et al. Cyclic spectrum based intelligent modulation recognition with machine learning[C]//Proc. of the 10th International Conference on Wireless Communications and Signal Processing, 2018.
|
10 |
ZHAO Y L , YU Z M , WAN Z Q , et at . Low complexity OSNR monitoring and modulation format identification based on binarized neural networks[J]. Journal of Lightwave Technology, 2020, 38 (6): 1314- 1322.
doi: 10.1109/JLT.2020.2973232
|
11 |
QU Z Y , HOU C F , HOU C B , et al. Radar signal intra-pulse modulation recognition based on convolutional neural network and deep Q-Learning network[J]. IEEE Access, 2020, 8, 49125- 49136.
doi: 10.1109/ACCESS.2020.2980363
|
12 |
ZHANG J , LI Y , YIN J P . Modulation classification method for frequency modulation signals based on the time-frequency distribution and CNN[J]. IET Radar, Sonar & Navigation, 2017, 12 (2): 244- 249.
|
13 |
BAI J L, GAO L, GAO J P, et al. A new radar signal modulation recognition algorithm based on time-frequency transform[C]// Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019: 21-25.
|
14 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191
|
15 |
李红光, 郭英, 眭萍, 等. 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版), 2020, 54 (10): 1945- 1954.
|
|
LI H G , GUO Y , MU P , et al. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of Zhejiang University (Engineering Science), 2020, 54 (10): 1945- 1954.
|
16 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proc. of the International Conference on Neural Information Processing Systems, 2014: 2672-2680.
|
17 |
CHI J N , WU C D , YU X S , et al. Single low-dose CT image denoising using a generative adversarial network with modified U-net generator and multi-level discriminator[J]. IEEE Access, 2020, 8, 133470- 133487.
doi: 10.1109/ACCESS.2020.3006512
|
18 |
LI D L , GONG S H , NIU S L , et al. Image blind denoising using a generative adversarial network for LED chip visual locali- zation[J]. IEEE Sensors Journal, 2020, 20 (12): 6582- 6595.
doi: 10.1109/JSEN.2020.2976576
|
19 |
ZENG Y , ZHANG M , HAN F , et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8 (3): 929- 932.
doi: 10.1109/LWC.2019.2900247
|
20 |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2472-2481.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|