1 |
GALLAGE R G . Low-density parity-check codes[J]. IRE Trans.on Information Theory, 1962, 8 (1): 21- 28.
doi: 10.1109/TIT.1962.1057683
|
2 |
RICHARDSON T J , URBANKER L . The capacity of low-density paritycheck codes under message-passing decoding[J]. IEEE Trans.on Information Theory, 2001, 47 (2): 599- 618.
doi: 10.1109/18.910577
|
3 |
姚玲, 张帆. 5G多径信道下基于BP算法的LDPC编译码研究[J]. 绥化学院学报, 2019, 39 (6): 148- 151.
|
|
YAO L , ZHANG F . Research on LDPC encoding and decoding based on BP algorithm under 5G multipath channel[J]. Journal of Suihua University, 2019, 39 (6): 148- 151.
|
4 |
SHARMA S K , CHATZINOTAS S , OTTERSTEN B . SNR estimation for multi-dimensional cognitive receiver under correlated channel/ noise[J]. IEEE Trans.on Wireless Communications, 2013, 12 (12): 6392- 6405.
doi: 10.1109/TWC.2013.103113.130523
|
5 |
HAJIMIRI A , LEE T H . A general theory of phase noise in electrical oscillators[J]. IEEE Journal of Solid-State Circuits, 1998, 33 (2): 179- 194.
doi: 10.1109/4.658619
|
6 |
SAEED S T, BRUCE F C, STEPHEN B. On the effects of colored noise on the performance of LDPC codes[C]//Proc. of the IEEE Workshop on Signal Processing Systems Design and Implementation, 2006: 226-231.
|
7 |
徐鹏, 孔令军, 赵生妹, 等. 基于PD-CNN的Polar码译码算法[J]. 信号处理, 2019, 35 (10): 1652- 1659.
|
|
XU P , KONG L J , ZHAO S M , et al. A decoding algorithm for Polar codes based on PD-CNN[J]. Journal of Signal Processing, 2019, 35 (10): 1652- 1659.
|
8 |
王祥旭, 车书玲, 纪玉晖. 一种有效的局部可修复的构造方法[J]. 西安电子科技大学学报, 2019, 46 (3): 27- 28.
|
|
WANG X X , CHE S L , JI Y H . Effective construction method for locally repairable codes[J]. Journal of Xidian University, 2019, 46 (3): 27- 28.
|
9 |
NACHMANI E, BEERY Y, BURSHTEIN D. Learning to decode linear codes using deep learning[C]//Proc. of the 54th Annual Allerton Conference, 2016: 341-346.
|
10 |
NACHMAINI E, MARCIAND E, BURSHTEIN D, et al. RNN decoding of linear block codes[EB/OL]. [2021-01-04]. http://arxiv.org/abs/1702.07560.
|
11 |
LIU B , XIE Y X , YUAN J H . A deep learning assisted node-classified redundant decoding algorithm for BCH codes[J]. IEEE Trans.on Communications, 2020, 68 (9): 5338- 5449.
doi: 10.1109/TCOMM.2020.3001162
|
12 |
CAPLAN P , SHIMIZU H , KOBAYSHI S , et al. Cataloging internet resources[J]. The Public Access Computer Systems Review, 1993, 4 (2): 61- 66.
|
13 |
徐想. 基于深度学习的极化码译码算法研究[D]. 北京: 北京交通大学, 2019.
|
|
XU X. Study on decoding algorithms of polar codes based on deep learning[D]. Beijing: Beijing Jiaotong University, 2019.
|
14 |
LIU X C , ZHANG Y B , CUI R . Variable-node-based dynamic scheduling strategy for belief-propagation decoding of LDPC codes[J]. IEEE Communications Letters, 2015, 19 (2): 147- 150.
doi: 10.1109/LCOMM.2014.2385096
|
15 |
THI H P, THE C D, XUAN N P, et al. Simplified variable node unit architecture for nonbinary LDPC decoder[C]//Proc. of the IEEE Asia Pacific Conference on Circuits and Systems, 2019: 213-216.
|
16 |
CHYTAS D, PALIOURAS V. Approximate sorting check node processing in non-binary LDPC decoders[C]//Proc. of the IEEE 27th International Conference on Electronics, Circuits and Systems, 2020.
|
17 |
MUHAMMAD A , ANAS P , ASHFAQ A , et al. LDPC check node implementation using reversible logic[J]. Circuits, Devices & Systems, 2019, 13 (4): 443- 455.
|
18 |
刘向楠. BP算法和WBF算法相结合的LDPC码译码算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
|
|
LIU X N. Research on LDPC code decoding algorithm combining BP algorithm and WBF algorithm[D]. Harbin: Harbin Institute of Technology, 2011.
|
19 |
HADDADI S , FARHANG M , DERAKHTIAN M . Low-complexity decoding of LDPC codes using reduced-set WBF-based algorithms[J]. Journal on Wireless Communications and Networking, 2020,
doi: 10.1186/s13638-020-01791-5.S
|
20 |
ZHANG X , JIAO X P , HE Y C , et al. Weighted bit-flipping decoding of LDPC codes with LLR adjustment for MLC flash memories[J]. IEICE Trans.on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102.A (11): 1571- 1574.
doi: 10.1587/transfun.E102.A.1571
|
21 |
HARITA D, PARGUNA R K. Reliability variance based weighted bit flipping algorithms for LDPC[C]//Proc. of the 9th International Conference on Cloud Computing, Data Science & Engineering, 2019: 593-595.
|
22 |
KOU Y , LIN S , FOSSORIER M . Low-density parity-check codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans.on Information Theory, 2001, 47 (7): 2711- 2736.
doi: 10.1109/18.959255
|
23 |
ZHANG K , ZUO W M , CHEN Y J , et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans.on Image Processing, 2016, 26 (7): 3142- 3155.
|
24 |
JANG J W , KWON Y C , LIM H , et al. CNN-based denoising, completion, and prediction of whole-body human-depth images[J]. IEEE Access, 2019, 7, 175842- 175856.
doi: 10.1109/ACCESS.2019.2957862
|
25 |
张翔翔. 相关噪声下基于深度学习的卷积码译码器的研究[D]. 北京: 北京邮电大学, 2019.
|
|
ZHANG X X. Research on convolutional code decoder based on deep learning under correlated noise[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
26 |
ALEX D , SEMIH Y H , VINCENT P , et al. The capacity achieving distribution for the amplitude constrained additive Gaussian channel: an upper bound on the number of mass points[J]. IEEE Trans.on Information Theory, 2019, 66 (4): 2006- 2022.
|
27 |
THORSTEN T , HERBERT B . Jarque-Bera test and its competitors for test ingnormality: a power comparison[J]. Journal of Applied Statistics, 2007, 34 (1): 87- 105.
doi: 10.1080/02664760600994539
|
28 |
SHARMA S K , CHATZINOTAS S , OTTERSTEN B . SNR estimation for multi-dimensional cognitive receiver under correlated channel/noise[J]. IEEE Trans.on Wireless Communications, 2013, 12 (12): 6392- 6405.
doi: 10.1109/TWC.2013.103113.130523
|
29 |
DIEDERIK P K, JIMMY L B. Adam: a method for stochastic optimization[C]//Proc. of the International Conference on Learning Representations, 2015.
|
30 |
KIRA K, FLORIAN G, TOBIAS D, et al. Database of channel codes and ML simulation results[EB/OL]. [2021-01-22]. http://www.uni-kl.de/channel-codes.
|