系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 977-985.doi: 10.12305/j.issn.1001-506X.2022.03.30

• 制导、导航与控制 • 上一篇    下一篇

基于多尺度光流融合特征点视觉-惯性SLAM方法

王通典, 刘洁瑜*, 吴宗收, 沈强, 姚二亮   

  1. 火箭军工程大学导弹工程学院, 陕西 西安 710025
  • 收稿日期:2021-07-02 出版日期:2022-03-01 发布日期:2022-03-10
  • 通讯作者: 刘洁瑜
  • 作者简介:王通典 (1996—), 男, 硕士研究生, 主要研究方向为视觉导航|刘洁瑜 (1970—), 女, 教授, 博士, 主要研究方向为惯性导航、计算机视觉方面的研究|吴宗收 (1997—), 男, 硕士研究生,主要研究方向为半球谐振陀螺仪|沈强 (1989—), 男, 讲师,博士,主要研究方向为MEMS组合导航|姚二亮 (1992—), 男, 讲师,博士,主要研究方向为视觉SLAM
  • 基金资助:
    陕西省科技计划(2021JQ-372);陕西省自然科学基础研究计划(2020JQ-491)

Visual-inertial SLAM method based on multi-scale optical flow fusion feature point

Tongdian WANG, Jieyu LIU*, Zongshou WU, Qiang SHEN, Erliang YAO   

  1. College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China
  • Received:2021-07-02 Online:2022-03-01 Published:2022-03-10
  • Contact: Jieyu LIU

摘要:

为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度, 结合特征点法精度高和光流法速度快的特点以及惯性信息, 提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先, 改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程, 采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点, 提高特征分布离散性。其次, 在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联, 在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联, 保证算法速度的同时提高定位精度和鲁棒性。最后, 基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值, 整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明, 所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性, 定位精度平均提升16.7%。

关键词: 视觉-惯性同时定位与地图构建, 光流法, 状态估计

Abstract:

In order to improve the robustness and accuracy of vision inertial navigation system in weak texture environment, combined with the characteristics of high accuracy of feature point method and fast speed of optical flow method and inertial information, a vision inertial simultaneous localization and mapping (SLAM) method of multi-scale homogenization optical flow fusion feature point method is proposed. Firstly, the feature extraction process of oriented fast and rotated brief (ORB) algorithm is improved, the orb feature points are extracted by multi-scale grid method, and the feature points are evenly distributed by quadtree to improve the discreteness of feature distribution. Secondly, the LK (Lucas and Kanade) optical flow method is used to track the feature points between frames for data association, and the descriptor of the feature points is calculated and matched in the key frame, so as to realize the data association between key frames, ensure the speed of the algorithm and improve the positioning accuracy and robustness. Finally, the initial pose obtained from the data association established based on the optical flow method provides the initial value for the back-end optimization, integrates the re projection error of orb feature points, the pre integration error of inertial measurement unit (IMU) and the a priori error of sliding window, constructs the minimization target function, and uses the nonlinear optimization of sliding window to solve it. Experiments show that the proposed method has higher positioning accuracy and robustness than monocular visual inertial system (VINS-Mono), and the positioning accuracy is improved by 16.7% on average.

Key words: visual inertial simultaneous localization and mapping (SLAM), optical flow method, state estimation

中图分类号: