1 |
张灿, 林旭斌, 刘都群, 等. 2019年国外高超声速飞行器技术发展综述[J]. 飞航导弹, 2020, (1): 16- 20.
|
|
ZHANG C , LIN X B , LIU D Q , et al. A review of foreign hypersonic vehicle technology development in 2019[J]. Aerodynamic Missile Journal, 2020, (1): 16- 20.
|
2 |
HIRSCHEL E H, CLAUS W. 高超声速飞行器气动热力学设计问题精选[M]. 唐志共等, 译. 北京: 国防工业出版社, 2013: 1-12, 89-92.
|
|
HIRSCHEL E H, CLAUS W. Selected aerother-modynamic design problems of hypersonic flight vehicles[M]. TANG Z G, et al, Trans. Beijing: National Defense Industry Press, 2013: 1-12, 89-92.
|
3 |
QU F , SUN D , ZUO G . A study of upwind schemes on the lami- nar hypersonic heating predictions for the reusable space vehicle[J]. Acta Astronautica, 2018, 147 (6): 412- 420.
|
4 |
EYI S , YUMUȘAK M . Aerothermodynamic shape optimization of hypersonic blunt bodies[J]. Engineering Optimization, 2015, 47 (7): 909- 926.
doi: 10.1080/0305215X.2014.933822
|
5 |
孙勇. 基于改进Gauss伪谱法的高超声速飞行器轨迹优化与制导[D]. 哈尔滨: 哈尔滨工业大学, 2012: 4-10.
|
|
SUN Y. Trajectory optimization and guidance of hypersonic vehicle based on improved Gauss pseudospectral method[D]. Harbin: Harbin Institute of Technology, 2012: 4-10.
|
6 |
BETTS J T . Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 193- 207.
doi: 10.2514/2.4231
|
7 |
CONWAY B . A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152 (2): 271- 306.
doi: 10.1007/s10957-011-9918-z
|
8 |
CHAI R Q , SAVVARIS A , TSOURDOS A , et al. A review of optimization techniques in spacecraft flight trajectory design[J]. Progress in Aerospace Sciences, 2019, 109, 100543.
doi: 10.1016/j.paerosci.2019.05.003
|
9 |
BENSON D A , HUNTINGTON G T , THORVALDSEN T P , et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (6): 1435- 1440.
doi: 10.2514/1.20478
|
10 |
ROSS I M, FAHROO F. Legendre pseudospectral approximations of optimal control problems[C]//Proc. of the New Trends in Nonlinear Dynamics and Control and Their Applications, 2003: 327-342.
|
11 |
BANKS H T , FAKHROO F . Legendre-Tau approximations for LQR feedback control of acouustic pressure fields[J]. Journal of Mathematical Systems Estimation Control, 1995, 5 (2): 271- 274.
|
12 |
REDDIEN G W . Collocation at gauss points as a discretization in optimal control[J]. SIAM Journal on Control and Optimization, 1979, 17 (2): 298- 306.
doi: 10.1137/0317023
|
13 |
ZHANG Y , CHEN J , SHEN L C . Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack[J]. Journal of Systems Engineering and Electronics, 2012, 23 (4): 536- 552.
doi: 10.1109/JSEE.2012.00068
|
14 |
WANG Z , WU Z . Six-DOF trajectory optimization for reusable launch vehicles via Gauss pseudospectral method[J]. Journal of Systems Engineering and Electronics, 2016, 27 (2): 434- 441.
doi: 10.1109/JSEE.2016.00044
|
15 |
WANG L , XING Q H , MAO Y F . Reentry trajectory rapid optimization for hypersonic vehicle satisfying waypoint and no-fly zone constraints[J]. Journal of Systems Engineering and Electronics, 2015, 26 (6): 1277- 1290.
doi: 10.1109/JSEE.2015.00140
|
16 |
ZHOU J , SHAO L , WANG H J , et al. Optimal midcourse trajectory planning considering the capture region[J]. Journal of Systems Engineering and Electronics, 2018, 29 (3): 587- 600.
doi: 10.21629/JSEE.2018.03.16
|
17 |
TIAN B L , FAN W R . Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (3): 1639- 1650.
doi: 10.1109/TIE.2014.2341553
|
18 |
SAGLIANO M , MOOIJ E , THEIL S . Onboard trajectory gene- ration for entry vehicles via adaptive multivariate pseudospectral interpolation[J]. Journal of Guidance, Control, and Dynamics, 2016, 40 (2): 466- 476.
|
19 |
LIU X F , SHEN Z J . Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (2): 227- 241.
doi: 10.2514/1.G001210
|
20 |
LU P , XUE S B . Rapid generation of accurate entry landing footprints[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (3): 756- 767.
doi: 10.2514/1.46833
|
21 |
RIZVI S T I , HE L S , XU D J . Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for me-dium range application[J]. Defence Technology, 2015, 11 (4): 350- 361.
doi: 10.1016/j.dt.2015.06.003
|
22 |
ISTRATIE V. Optimal skip entry into atmosphere with minimum heat[C]//Proc. of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2003.
|
23 |
TU L H, YUAN J P, FANG Q, et al. Reentry skipping tra- jectory optimization using direct parameter optimization method[C]// Proc. of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
|
24 |
WANG W K, HOU Z X, LIU D N, et al. Heat-augmented trajectory optimization of hypersonic cruise vehicle[C]//Proc. of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017.
|
25 |
WANG W K , HOU Z X , LIU D N , et al. Periodically cruising hypersonic vehicle with active cooling: an optimal-control based design approach[J]. IEEE Access, 2019, 7, 65486- 65505.
doi: 10.1109/ACCESS.2019.2918848
|
26 |
赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 74- 87.
|
|
ZHAO H Y . Reentry dynamics and guidance[M]. Changsha: Press of National University of Defense Technology, 1997: 74- 87.
|
27 |
刘双. 高超声速飞行器热防护系统主动冷却机制与效能评估[D]. 哈尔滨: 哈尔滨工业大学, 2010: 28-33.
|
|
LIU S. Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2010: 28-33.
|
28 |
LIU X S , FU Q G , ZHANG J P , et al. Design of a novel all-carbon multi-layer structure with excellent thermal protection performance based on carbon/carbon composites and carbon foam[J]. Ceramics International, 2020, 46 (18, Part A): 28887- 28893.
doi: 10.1016/j.ceramint.2020.08.056
|
29 |
BLOSSER M L . Fundamental modeling and thermal perfor- mance issues for metallic thermal protection system concept[J]. Journal of Spacecraft and Rockets, 2004, 41 (2): 195- 206.
doi: 10.2514/1.9182
|
30 |
MYERS D E, MARTIN C J, BLOSSER M L. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems. [R]. NASA Center for Aerospace Information, 2000: 1-46.
|
31 |
PHILLIPS T H, CORPORATION S. A common aero vehicle (CAV) model, description, and employment guide[EB/OL]. [2021-06-01]. https://www.doc88.com/p-501932383682.html.
|