1 |
朱剑佑. 无人机任务规划研究[J]. 无线电工程, 2007, (12): 56- 58.
doi: 10.3969/j.issn.1003-3106.2007.12.019
|
|
ZHU J Y . Research on unmanned aerial vehicle mission planning[J]. Radio Engineering, 2007, (12): 56- 58.
doi: 10.3969/j.issn.1003-3106.2007.12.019
|
2 |
沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35 (3): 593- 606.
|
|
SHEN L C , CHEN J , WANG N . Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (3): 593- 606.
|
3 |
PASHNA M , YUSOF R , ISMAIL Z H , et al. Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach[J]. Ocean Engineering, 2020, 207 (6): 107238.
|
4 |
BATISTA J , SOUZA D , SILVA J , et al. Trajectory planning using artificial potential fields with metaheuristics[J]. IEEE Latin America Transactions, 2020, 18 (5): 914- 922.
doi: 10.1109/TLA.2020.9082920
|
5 |
KUMAR P B , RAWAT H , PARHI D R . Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems, 2019, 36 (1): e12360.
|
6 |
SANG H Q , YOU Y S , SUN X J , et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223 (4): 108709.
|
7 |
GIBSON J , SCHULER T , MCGUIRE L , et al. Swarm and multi-agent time-based A* path planning for LTA3 systems[J]. Unmanned Systems, 2020, 8 (3): 253- 260.
doi: 10.1142/S2301385020500181
|
8 |
THORESEN M , NIELSEN N H , MATHIASSEN K , et al. Path planning for ugvs based on traversability hybrid A*[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 1216- 1223.
doi: 10.1109/LRA.2021.3056028
|
9 |
XIONG C K , LU D , ZENG Z , et al. Path planning of multiple unmanned marine vehicles for adaptive ocean sampling using elite group-based evolutionary algorithms[J]. Journal of Intelligent & Robotic Systems, 2020, 99 (3): 875- 889.
|
10 |
LIN B L , ZHAO Y N , LIN R X , et al. Integrating traffic routing optimization and train formation plan using simulated annealing algorithm[J]. Applied Mathematical Modelling, 2021, 93, 811- 830.
doi: 10.1016/j.apm.2020.12.031
|
11 |
ASIF R, LOFFEL H, ASSAVASANG V, et al. Aerial path planning for multi-vehicles[C]//Proc. of the IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, 2019: 97-99.
|
12 |
HERTZ A , RIDREMONT T . A tabu search for the design of capacitated rooted survivable planar networks[J]. Journal of Heuristics, 2020, 26 (6): 829- 850.
doi: 10.1007/s10732-020-09453-x
|
13 |
ZHENG J G , MI X M , LIAO H C . Advanced planning and scheduling based on the constraint theory and improved tabu search algorithm[J]. Recent Patents on Engineering, 2020, 13 (2): 546- 549.
|
14 |
CHÂARI I , KOUBÂA A , BENNACEUR H , et al. On the ade- quacy of tabu search for global robot path planning problem in grid environments[J]. Procedia Computer Science, 2014, 32 (1): 604- 613.
|
15 |
TRAN N H , NGUYEN A D , NGUYEN T N . A genetic algorithm application in planning path using b-spline model for autonomous underwater vehicle (AUV)[J]. Applied Mechanics and Materials, 2020, 902 (1): 54- 64.
|
16 |
LIN L H , WU C Z , MA L . A genetic algorithm for the fuzzy shortest path problem in a fuzzy network[J]. Complex & Intelligent Systems, 2020, 7 (3): 225- 234.
|
17 |
RATH A K , PARHI D R , DAS H C , et al. Path optimization for navigation of a humanoid robot using hybridized fuzzy-genetic algorithm[J]. International Journal of Intelligent Unmanned Systems, 2019, 7 (1): 77- 79.
|
18 |
SHI L , XU S K . UAV path planning with qos constraint in device-to-device 5G networks using particle swarm optimization[J]. IEEE Access, 2020, 8, 137884- 137896.
doi: 10.1109/ACCESS.2020.3010281
|
19 |
SHAO S K , YU P , HE C L , et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97 (2): 415- 430.
|
20 |
KUMAR P B , PARHI D R , SAHU C . An approach to optimize the path of humanoid robots using a hybridized regression-adaptive particle swarm optimization-adaptive ant colony optimization method[J]. Industrial Robot, 2019, 46 (1): 5- 10.
|
21 |
CHEN Y Q , GUO J L , YANG H , et al. Research on navigation of bidirectional A* algorithm based on ant colony algorithm[J]. The Journal of Supercomputing, 2021, 77 (1): 23- 27.
doi: 10.1007/s11227-020-03258-2
|
22 |
DAI Y , ZHAO M . Manipulator path-planning avoiding obstacle based on screw theory and ant colony algorithm[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13 (1): 922- 927.
doi: 10.1166/jctn.2016.4894
|
23 |
MOUHCINE E, KHALIFA M, MOHAMED Y. Route optimization for school bus scheduling problem based on a distributed ant colony system algorithm[C]//Proc. of the IEEE International Conference on Intelligent Systems and Computer, 2017.
|
24 |
JENSEN K . Coloured petri nets[M]. Berlin: Springer Berlin Heidelberg, 1987: 249- 299.
|
25 |
JENSEN K . Coloured Petri nets: basic concepts[M]. Berlin: Springer Berlin Heidelberg, 1992: 23- 50.
|
26 |
THANGARAJAH J, WINIKOFF M, LIN P, et al. Avoiding resource conflicts in intelligent agents[C]//Proc. of the 15th European Conference on Artifical Intelligence, 2002: 18-22.
|
27 |
THANGARAJAH J, PADGHAM L. An empirical evaluation of reasoning about resource conflicts[C]//Proc. of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, 2004: 1298-1299.
|
28 |
THANGARAJAH J, PADGHAM L, WINIKOFF M. Detecting & exploiting positive goal interaction in intelligent agents[C]//Proc. of the International Joint Conference on Autonomous Agents & Multiagent Systems, 2003: 401-408.
|
29 |
VISSER S , THANGARAJAH J , HARLAND J , et al. Prefe-rence-based reasoning in BDI agent systems[J]. Autonomous Agents and Multi-Agent Systems, 2015, 30 (2): 291- 330.
|
30 |
THANGARAJAH J , LIN P . Computationally effective reaso-ning about goal interactions[J]. Journal of Automated Reaso-ning, 2011, 47 (1): 17- 56.
doi: 10.1007/s10817-010-9175-0
|