系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 863-874.doi: 10.12305/j.issn.1001-506X.2022.03.19
王春政1,2, 胡明华1,2, 杨磊1,2,*, 赵征1,2
收稿日期:
2021-03-03
出版日期:
2022-03-01
发布日期:
2022-03-10
通讯作者:
杨磊
作者简介:
王春政(1992—), 男, 博士研究生, 主要研究方向为空中交通流量管理|胡明华(1962—), 男, 教授, 硕士, 主要研究方向为空中交通系统信息化与智能化、空中交通流量管理理论与实现、空域规划管理与评估技术|杨磊(1987—), 男, 助理研究员, 博士, 主要研究方向为空中交通流量管理|赵征(1978—), 男, 讲师, 博士, 主要研究方向为空中交通流量管理
基金资助:
Chunzheng WANG1,2, Minghua HU1,2, Lei YANG1,2,*, Zheng ZHAO1,2
Received:
2021-03-03
Online:
2022-03-01
Published:
2022-03-10
Contact:
Lei YANG
摘要:
空中交通系统作为典型复杂系统, 其非线性聚合的动力学特征给延误预测带来挑战, 使空中交通延误预测问题保持了开放性。近二十年来, 针对此问题, 利用传统机器学习、深度学习、复杂系统建模仿真、排队理论等, 涌现出大量研究成果。首先系统性阐述了空中交通延误产生与传播的原因, 并根据预测数值类型、预测对象以及预测时间尺度对现有研究中的延误预测类型进行分类; 然后纵贯国内外研究成果, 对空中交通延误预测方法进行分类, 详细回顾了代表性方法的实现过程, 并进行综合性对比。最后根据现有研究存在的问题, 讨论了未来可能的发展方向。
中图分类号:
王春政, 胡明华, 杨磊, 赵征. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874.
Chunzheng WANG, Minghua HU, Lei YANG, Zheng ZHAO. Review on air traffic delay prediction[J]. Systems Engineering and Electronics, 2022, 44(3): 863-874.
表1
基于历史数据的延误预测方法总结"
方法类型 | 模型 | 聚合/个体延误 | 延误输出类型 | 特点 |
经典机器学习 | 贝叶斯网络 | 聚合延误 | 分类型 | 适用于小型网络的延误分析; 面对大型复杂网络时, 工作量大; 需要经验知识 |
随机森林 | 聚合延误/个体延误 | 分类型/连续型 | 精度较高、无需先验知识, 容易分析变量的重要度 | |
SVM | 个体延误 | 分类型/连续型 | 易处理小样本、非线性、高维数 | |
多元线性回归 | 聚合延误 | 连续型 | 建模简单, 有助于分析各解释变量的重要程度 | |
BP神经网络 | 聚合延误 | 连续型 | 建模简单 | |
多元自适应回归样条 | 聚合延误 | 连续型 | 一定程度上能够处理延误变量的非线性关系 | |
深度学习 | LSTM-RNN | 个体延误 | 分类型 | 精度良好 |
MLILNN | 个体延误 | 连续型 | 性能优于传统BP神经网络, 易处理名义变量 | |
DBN-SVR | 个体延误 | 连续型 | 易处理高维数据 | |
CBAM-CondenseNet | 个体延误 | 分类型 | 能够解决深层网络梯度消散问题, 提升网络预测精度 | |
概率模型 | 平滑样条-混合分布 | 个体延误 | 概率型 | 延误输出结果能够包含的不确定性理解; 建模的简易性建立在对变量模糊处理的基础上 |
表2
基于运筹学方法的延误预测方法总结"
核心方法类型 | 工具/方法 | 网络要素 | 机场容量设置方法 | 是否考虑气象状况 | 过程时间 | 延误输出类型 |
建模仿真 | NASPAC | 机场(不含滑行), 进离场点, 航路扇区, 流控区 | 包络线方法 | 否 | 航空器性能 | 个体延误 |
DPAT | 机场(不含滑行)、航路扇区和航路点 | 包络线方法 | 否 | 排列论 | 个体延误 | |
Agent-Fleurquin | 机场(不含滑行) | 计划容量 | 否 | 常数/计划时间 | 个体/聚合延误 | |
Agent-Date Mining | 机场(不含滑行) | 数据挖掘 | 是 | 数据挖掘 | 个体/聚合延误 | |
排队论 | LMINET | 机场(含滑行)、进近管制和航路管制扇区 | 包络线方法 | 否 | 排队论 | 个体/聚合延误 |
LMINET2 | 机场(含滑行) | 公布容量/包络线方法 | 是 | 计划减去缓冲时间 | 个体/聚合延误 | |
AND | 机场(不含滑行) | 公布容量 | 是 | 计划减去缓冲时间 | 个体/聚合延误 |
1 | 中国民用航空局. 民航行业发展统计公报[R]. 北京: 中国民航局, 2020: 14. |
Civil Aviation Administration of China. Civil aviation industry development statistics bulletin[R]. Beijing: Civil Aviation Administration of China, 2020: 14. | |
2 | United States Department of Transportation. Understanding the reporting of causes of flight delays and cancellations[EB/OL]. [2020-11-12]. https://www.bts.dot.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-cancellations. |
3 |
CHEN Y X , YU J , TSAI S B , et al. An empirical study on the indirect impact of flight delay on China's economy[J]. Sustaina-bility, 2018, 10 (2): 357.
doi: 10.3390/su10020357 |
4 | BALL M, BARNHART C, DRESNER M, et al. Total delay impact study: a comprehensive assessment of the costs and impacts of flight delay in the United States[R]. Washington, D C: National Center of Excellence for Aviation Operations Research, 2010: 5-77. |
5 | MOLINA M, CARRASCO S, MARTIN J. Agent-based mode-ling and simulation for the design of the future european air traffic management system: the experience of cassiopeia[C]//Proc. of the International Conference on Practical Applications of Agents and Multi-Agent Systems, 2014: 22-33. |
6 | WANG C, ZHANG Z Y, ZHU M. Nonlinear dynamic analysis of air traffic flow at different temporal scales: nonlinear analysis approach versus complex networks approach[C]//Proc. of the IEEE International Conference on Software Quality, Reliability and Security Companion, 2018: 421-431. |
7 | STERNBERG A, SOARES J, CARVALHO D, et al. A review on flight delay prediction[EB/OL]. [2021-02-28]. http://arxiv.org/abs/1703.06118. |
8 |
刘博, 叶博嘉, 田勇, 等. 航班延误预测方法研究综述[J]. 航空计算技术, 2019, 49 (6): 124- 128.
doi: 10.3969/j.issn.1671-654X.2019.06.030 |
LIU B , YE B J , TIAN Y , et al. Review of flight delay prediction methods[J]. Aeronautical Computing Technique, 2019, 49 (6): 124- 128.
doi: 10.3969/j.issn.1671-654X.2019.06.030 |
|
9 |
罗凤娥, 王波, 李娜, 等. 基于数据挖掘技术的航班延误预测综述[J]. 科技和产业, 2020, 20 (11): 75- 80.
doi: 10.3969/j.issn.1671-1807.2020.11.012 |
LUO F E , WANG B , LI N , et al. Research review of flight delay prediction based on data mining technology[J]. Science Technology and Industry, 2020, 20 (11): 75- 80.
doi: 10.3969/j.issn.1671-1807.2020.11.012 |
|
10 | WIELAND F. Limits to growth: results from the detailed policy assessment tool[air traffic congestion][C]//Proc. of the AIAA/IEEE 16th Digital Avionics Systems Conference, 1997. |
11 |
COOK A , BELKOURA S , ZANIN M . ATM performance measurement in Europe, the US and China[J]. Chinese Journal of Aeronautics, 2017, 30 (2): 479- 90.
doi: 10.1016/j.cja.2017.01.001 |
12 |
GULERIA Y , CAI Q , ALAM S , et al. A multi-agent approach for reactionary delay prediction of flights[J]. IEEE Access, 2019, 7, 181565- 181579.
doi: 10.1109/ACCESS.2019.2957874 |
13 | HANSEN M, XIONG J, NEXTOR B. Weather normalization for evaluating national airspace system performance[C]//Proc. of the 7th USA/Europe Air Traffic Management Research and Development Seminar, 2007. |
14 |
SCHULTZ M , LORENZ S , SCHMITZ R , et al. Weather impact on airport performance[J]. Aerospace, 2018, 5 (4): 109.
doi: 10.3390/aerospace5040109 |
15 | COY S . A global model for estimating the block time of commercial passenger aircraft[J]. Journal of Air Transport Mana-gement, 2006, 12 (6): 300- 305. |
16 |
BORSKY S , UNTERBERGER C . Bad weather and flight delays: the impact of sudden and slow onset weather events[J]. Economics of Transportation, 2019, 18, 10- 26.
doi: 10.1016/j.ecotra.2019.02.002 |
17 |
XU N , SHERRY L , LASKEY K B . Multifactor model for predicting delays at U.S. airports[J]. Transportation Research Record, 2008, 2052 (1): 62- 71.
doi: 10.3141/2052-08 |
18 |
LIU Y , HANSEN M . Evaluation of the performance of ground delay programs[J]. Transportation Research Record, 2014, 2400 (1): 54- 64.
doi: 10.3141/2400-07 |
19 |
DORNDORF U , DREXL A , NIKULIN Y , et al. Flight gate scheduling: state-of-the-art and recent developments[J]. Omega, 2007, 35 (3): 326- 334.
doi: 10.1016/j.omega.2005.07.001 |
20 |
JARRAH A I , YU G , KRISHNAMURTHY N , et al. A decision support framework for airline flight cancellations and delays[J]. Transportation Science, 1993, 27 (3): 266- 280.
doi: 10.1287/trsc.27.3.266 |
21 |
KOHL N , LARSEN A , LARSEN J , et al. Airline disruption management-perspectives, experiences and outlook[J]. Journal of Air Transport Management, 2007, 13 (3): 149- 162.
doi: 10.1016/j.jairtraman.2007.01.001 |
22 |
李俊生, 丁建立. 基于贝叶斯网络的航班延误传播分析[J]. 航空学报, 2008, 29 (6): 1598- 1604.
doi: 10.3321/j.issn:1000-6893.2008.06.030 |
LI J S , DING J L . Analysis of flight delay propagation using bayesian networks[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29 (6): 1598- 1604.
doi: 10.3321/j.issn:1000-6893.2008.06.030 |
|
23 |
CHURCHILL A M , LOVELL D J , BALL M O . Flight delay propagation impact on strategic air traffic flow management[J]. Transportation Research Record, 2010, 2177 (1): 105- 113.
doi: 10.3141/2177-13 |
24 |
KAFLE N , ZOU B . Modeling flight delay propagation: a new analytical-econometric approach[J]. Transportation Research Part B: Methodological, 2016, 93, 520- 542.
doi: 10.1016/j.trb.2016.08.012 |
25 |
IVANOV N , NETJASOV F , JOVANOVIĆ R , et al. Air traffic flow management slot allocation to minimize propagated delay and improve airport slot adherence[J]. Transportation Research Part A: Policy and Practice, 2017, 95, 183- 197.
doi: 10.1016/j.tra.2016.11.010 |
26 | CAO Y K , ZHU C P , WANG Y J , et al. A method of reducing flight delay by exploring internal mechanism of flight delays[J]. Journal of Advanced Transportation, 2019, 7069380. |
27 |
ABDELGHANY K F , SHAH S S , RAINA S , et al. A model for projecting flight delays during irregular operation conditions[J]. Journal of Air Transport Management, 2004, 10 (6): 385- 394.
doi: 10.1016/j.jairtraman.2004.06.008 |
28 |
AHMADBEYGI S , COHN A , GUAN Y , et al. Analysis of the potential for delay propagation in passenger airline networks[J]. Journal of Air Transport Management, 2008, 14 (5): 221- 236.
doi: 10.1016/j.jairtraman.2008.04.010 |
29 | TUMER K, AGOGINO A. Distributed agent-based air traffic flow management[C]//Proc. of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, 2007. |
30 |
MAYER C , SINAI T . Network effects, congestion externalities, and air traffic delays: or why not all delays are evil[J]. American Economic Review, 2003, 93 (4): 1194- 1215.
doi: 10.1257/000282803769206269 |
31 |
GAO Q , YAN J , ZHU J F . Airlines'optimization decision of slot allocation in CDM[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11 (5): 94- 98.
doi: 10.1016/S1570-6672(10)60144-4 |
32 |
VOSSEN T , BALL M . Optimization and mediated bartering models for ground delay programs[J]. Naval Research Logistics, 2006, 53 (1): 75- 90.
doi: 10.1002/nav.20123 |
33 |
TERRAB M , ODONI A R . Strategic flow management for air traffic control[J]. Operations Research, 1993, 41 (1): 138- 152.
doi: 10.1287/opre.41.1.138 |
34 | BALL M O , CHEN C Y , HOFFMAN R , et al. Collaborative decision making in air traffic management: current and future research directions[M]. Berlin: Springer, 2001: 17- 130. |
35 | YU B , GUO Z , ASIAN S , et al. Flight delay prediction for commercial air transport: a deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125 (5): 203- 221. |
36 | MANNA S, BISWAS S, KUNDU R, et al. A statistical approach to predict flight delay using gradient boosted decision tree[C]//Proc. of the IEEE International Conference on Computational Intelligence in Data Science, 2017. |
37 | WILLMOTT C J , MATSUURA K . Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005, 30 (1): 79- 82. |
38 |
CHAI T , DRAXLER R R . Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7 (3): 1247- 1250.
doi: 10.5194/gmd-7-1247-2014 |
39 | GOPALAKRISHNAN K, BALAKRISHNAN H. A comparative analysis of models for predicting delays in air traffic networks[C]//Proc. of the 12th USA/Europe Air Traffic Management Research and Development Seminar, 2017. |
40 |
ESMAEILZADEH E , MOKHTARIMOUSAVI S . Machine learning approach for flight departure delay prediction and analysis[J]. Transportation Research Record, 2020, 2674 (8): 145- 159.
doi: 10.1177/0361198120930014 |
41 | CHOI S, KIM Y J, BRICENO S, et al. Prediction of weather-induced airline delays based on machine learning algorithms[C]// Proc. of the IEEE/AIAA 35th Digital Avionics Systems Confe-rence, 2016. |
42 |
REBOLLO J J , BALAKRISHNAN H . Characterization and prediction of air traffic delays[J]. Transportation Research Part C: Emerging Technologies, 2014, 44, 231- 241.
doi: 10.1016/j.trc.2014.04.007 |
43 | BELCASTRO L , MAROZZO F , TALIA D , et al. Using scalable data mining for predicting flight delays[J]. ACM Trans.on Intelligent Systems and Technology, 2016, 8 (1): 1- 20. |
44 |
TU Y , BALL M O , JANK W S . Estimating flight departure delay distributions—a statistical approach with long-term trend and short-term pattern[J]. Journal of the American Statistical Association, 2008, 103 (481): 112- 125.
doi: 10.1198/016214507000000257 |
45 | MUELLER E, CHATTERJI G. Analysis of aircraft arrival and departure delay characteristics[C]//Proc. of the AIAA's Aircraft Technology, Integration, and Operations Technical Forum, 2002: 5866. |
46 | XU N, DONOHUE G, LASKEY K B, et al. Estimation of delay propagation in the national aviation system using Bayesian networks[C]//Proc. of the 6th USA/Europe Air Traffic Management Research and Development Seminar, 2005. |
47 | XU N, LASKEY K B, CHEN C H, et al. Bayesian network analysis of flight delays[C]//Proc. of the 86th Transportation Research Board Annual Meeting, 2007. |
48 | DOC 9971. Manual on collaborative air traffic flow management[S]. Montreal: International Civil Aviation Organization, 2018. |
49 |
FERGUSON J , KARA A Q , HOFFMAN K , et al. Estimating domestic US airline cost of delay based on European model[J]. Transportation Research Part C: Emerging Technologies, 2013, 33, 311- 323.
doi: 10.1016/j.trc.2011.10.003 |
50 | COOK A J, TANNER G. European airline delay cost reference values[R]. London: University of Westminster, 2011: 1-11. |
51 |
SRIDHAR B , CHEN N Y . Short-term national airspace system delay prediction using weather impacted traffic index[J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (2): 657- 662.
doi: 10.2514/1.38798 |
52 |
ZOGRAFOS K G , MADAS M A , ANDROUTSOPOULOS K N . Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs[J]. Journal of Scheduling, 2017, 20 (1): 3- 24.
doi: 10.1007/s10951-016-0496-7 |
53 |
FROLOW I , SINNOTT J H . National airspace system demand and capacity modeling[J]. Proceedings of the IEEE, 1989, 77 (11): 1618- 1624.
doi: 10.1109/5.47724 |
54 |
BALAKRISHNA P , GANESAN R , SHERRY L . Accuracy of reinforcement learning algorithms for predicting aircraft taxi-out times: a case-study of Tampa Bay departures[J]. Transportation Research Part C: Emerging Technologies, 2010, 18 (6): 950- 962.
doi: 10.1016/j.trc.2010.03.003 |
55 | WEISS K R, KHOSHGOFTAAR T M. An investigation of transfer learning and traditional machine learning algorithms[C]// Proc. of the IEEE 28th International Conference on Tools with Artificial Intelligence, 2016: 283-290. |
56 | CARVALHO L , STERNBERG A , MAIA G L , et al. On the relevance of data science for flight delay research: a systematic review[J]. Transport Reviews, 2020, 14, 21- 30. |
57 | TAN P N , STEINBACH M , KUMAR V . Introduction to data mining[M]. New Delhi: Pearson Education India, 2016. |
58 | TORRES-TOLEDANO J G, SUCAR L E. Bayesian networks for reliability analysis of complex systems[C]//Proc. of the Ibero-American Conference on Artificial Intelligence, 1998: 195-206. |
59 | 曹卫东. 基于改进贝叶斯网络结构学习的航班延误波及分析[D]. 天津: 天津大学, 2009. |
CAO W D. Flight delay propagation analysis based on improving Bayesian networks structure learning[D]. Tianjing: Tianjin University, 2009. | |
60 | 刘玉洁. 基于贝叶斯网络的航班延误与波及预测[D]. 天津: 天津大学, 2009. |
LIU Y J. The estimation of flight delay and propagation based on Bayesian networks[D]. Tianjing: Tianjin University, 2009. | |
61 |
吴薇薇, 孟亭婷, 张皓瑜. 基于机场延误预测的航班计划优化研究[J]. 交通运输系统工程与信息, 2016, 16 (6): 189- 195.
doi: 10.3969/j.issn.1009-6744.2016.06.029 |
WU W W , MENG T T , ZHANG H Y . Flight plan optimization based on airport delay prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16 (6): 189- 195.
doi: 10.3969/j.issn.1009-6744.2016.06.029 |
|
62 |
WU C L , LAW K . Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122, 62- 77.
doi: 10.1016/j.tre.2018.11.004 |
63 |
RODRÍGUEZ S Á , COMENDADOR F G , VALDÉS R A , et al. Assessment of airport arrival congestion and delay: predic- tion and reliability[J]. Transportation Research Part C: Emerging Technologies, 2019, 98, 255- 283.
doi: 10.1016/j.trc.2018.11.015 |
64 | 陈封能, 斯坦巴赫, 库马尔. 数据挖掘导论[M]. 范明等译. 2版. 北京: 人民邮电出版社, 2011: 168-185. |
CHEN F N, STEINBACH M, KUMAR V. Introduction to data mining[M]. 2nd ed. FAN M, et al. Trans. Beijing: Posts & Telfcom Press, 2011: 168-185. | |
65 | 王星. 大数据分析: 方法与应用[M]. 北京: 清华大学出版社, 2013: 63- 67. |
WANG X . Big data analysis: methods and applications[M]. Beijing: Tsinghua University Press, 2013: 63- 67. | |
66 |
BREIMAN L . Random forests[J]. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324 |
67 | HASTIE T , TIBSHIRANI R , FRIEDMAN J . The elements of statistical learning: data mining, inference, and prediction[M]. Berlin: Springer Science & Business Media, 2009. |
68 | GUI G , LIU F , SUN J L , et al. Flight delay prediction based on aviation big data and machine learning[J]. IEEE Trans.on Vehicular Technology, 2019, 69 (1): 140- 150. |
69 | 郭野晨风, 李杰, 胡明华, 等. 基于简化WITI指标的机场延误预测方法[J]. 交通运输系统工程与信息, 2017, 17 (5): 207- 213. |
GUO Y C F , LI J , HU M H , et al. Airport delay prediction method based on simplified weather impacted traffic index[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (5): 207- 213. | |
70 |
徐涛, 丁建立, 顾彬, 等. 基于增量式排列支持向量机的机场航班延误预警[J]. 航空学报, 2009, 30 (7): 1256- 1263.
doi: 10.3321/j.issn:1000-6893.2009.07.014 |
XU T , DING J L , GU B , et al. Forecast warning level of flight delays based on incremental ranking support vector machine[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (7): 1256- 1263.
doi: 10.3321/j.issn:1000-6893.2009.07.014 |
|
71 |
罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归的航班延误预测研究[J]. 交通运输系统工程与信息, 2015, 15 (1): 143- 149, 172.
doi: 10.3969/j.issn.1009-6744.2015.01.025 |
LUO Y Q , CHEN Z J , TANG J H , et al. Flight delay prediction using support vector machine regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15 (1): 143- 149, 172.
doi: 10.3969/j.issn.1009-6744.2015.01.025 |
|
72 |
罗谦, 张永辉, 程华, 等. 基于航空信息网络的枢纽机场航班延误预测模型[J]. 系统工程理论与实践, 2014, 34 (S1): 143- 150.
doi: 10.12011/1000-6788(2014)s1-143 |
LUO Q , ZHANG Y H , CHENG H , et al. Study on flight delay prediction model based on flight networks[J]. System Engineering-Theory & Practice, 2014, 34 (S1): 143- 150.
doi: 10.12011/1000-6788(2014)s1-143 |
|
73 |
陈海燕, 王建东, 徐涛. 动态数据驱动的航班延误预测研究[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36 (3): 463- 466.
doi: 10.3963/j.issn.2095-3844.2012.03.006 |
CHEN H Y , WANG J D , XU T . Research on the dynamic date-driven prediction for flight delay[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2012, 36 (3): 463- 466.
doi: 10.3963/j.issn.2095-3844.2012.03.006 |
|
74 |
何洋, 朱金福, 周秦炎. 基于支持向量机回归的机场航班延误预测[J]. 中国民航大学学报, 2018, 36 (1): 30- 36, 41.
doi: 10.3969/j.issn.1674-5590.2018.01.007 |
HE Y , ZHU J F , ZHOU Q Y . Airport flight delay prediction based on SVM regression[J]. Journal of Civil Aviation University of China, 2018, 36 (1): 30- 36, 41.
doi: 10.3969/j.issn.1674-5590.2018.01.007 |
|
75 |
王语桐, 朱金福, 马思思. 基于支持向量回归和线性回归的航班延误组合预测[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43 (3): 426- 431.
doi: 10.3963/j.issn.2095-3844.2019.03.010 |
WANG Y T , ZHU J F , MA S S . Combination forecast of flight delay based on support vector regression and linear regression[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43 (3): 426- 431.
doi: 10.3963/j.issn.2095-3844.2019.03.010 |
|
76 |
KAMILARIS A , PRENAFETA-BOLDÚ F X . Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147, 70- 90.
doi: 10.1016/j.compag.2018.02.016 |
77 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 446.
doi: 10.1038/nature14539 |
78 | 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42 (5): 28- 33. |
GUO L L , DING S F . Research progress on deep learning[J]. Computer Science, 2015, 42 (5): 28- 33. | |
79 | KIM Y J, CHOI S, BRICENO S, et al. A deep learning approach to flight delay prediction[C]//Proc. of the IEEE/AIAA 35th Digital Avionics Systems Conference, 2016. |
80 |
KHANMOHAMMADI S , TUTUN S , KUCUK Y . A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[J]. Procedia Computer Science, 2016, 95, 237- 244.
doi: 10.1016/j.procs.2016.09.321 |
81 | 王慧, 李永亮, 丁辉, 等. 基于深度学习的航班延误预测方法[J]. 指挥信息系统与技术, 2020, 11 (5): 11- 17. |
WANG H , LI Y L , DING H , et al. Flight delay prediction method based on deep learning[J]. Command Information System and Technology, 2020, 11 (5): 11- 17. | |
82 | 吴仁彪, 赵娅倩, 屈景怡, 等. 基于CBAM-CondenseNet的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43 (1): 187- 195. |
WU R B , ZHAO Y Q , QU J Y , et al. Flight delay propagation prediction model based on CBAM-condenseNet[J]. Journal of Electronics & Information Technology, 2021, 43 (1): 187- 195. | |
83 | BOSWELL S, EVANS J. Analysis of downstream impacts of air traffic delay[R]. Cambridge: Lincoln Laboratory, Massachusetts Institute of Technology, 1997: 3-45. |
84 |
WONG J T , TSAI S C . A survival model for flight delay propagation[J]. Journal of Air Transport Management, 2012, 23, 5- 11.
doi: 10.1016/j.jairtraman.2012.01.016 |
85 | LONG D, LEE D, JOHNSON J, et al. Modeling air traffic management technologies with a queuing network model of the national airspace system[R]. Washington D. C. : National Aeronautics and Space Administration, 1999: 10-125. |
86 | LONG D, HASAN S. Improved predictions of flight delays using LMINET2 system-wide simulation model[C]//Proc. of the AIAA 9th Aviation Technology, Integration, and Operations Conference and Aircraft Noise and Emissions Reduction Symposium, 2009: 6961. |
87 |
PYRGIOTIS N , MALONE K M , ODONI A . Modelling delay propagation within an airport network[J]. Transportation Research Part C: Emerging Technologies, 2013, 27, 60- 75.
doi: 10.1016/j.trc.2011.05.017 |
88 |
ODONI A R , ROTH E . An empirical investigation of the transient behavior of stationary queueing systems[J]. Operations Research, 1983, 31 (3): 432- 455.
doi: 10.1287/opre.31.3.432 |
89 | HENGSBACH G, ODONI A R. Time dependent estimates of delays and delay costs at major airports[R]. Cambridge: Massachusetts Institute of Technology, 1975: 11-17. |
90 | MALONE K M. Dynamic queueing systems: behavior and approximations for individual queues and for networks[D]. Cambridge: Massachusetts Institute of Technology, 1995. |
91 |
PETERSON M D , BERTSIMAS D J , ODONI A R . Models and algorithms for transient queueing congestion at airports[J]. Management Science, 1995, 41 (8): 1279- 1295.
doi: 10.1287/mnsc.41.8.1279 |
92 | FLEURQUIN P , RAMASCO J J , EGUILUZ V M . Systemic delay propagation in the US airport network[J]. Scientific Reports, 2013, 3 (1): 1- 6. |
93 | 王春政, 胡明华, 杨磊, 等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42 (7): 452- 465. |
WANG C Z , HU M H , YANG L , et al. Airport network delay prediction based on Agent model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 452- 465. | |
94 |
MUKHERJEE A , HANSEN M . A dynamic stochastic model for the single airport ground holding problem[J]. Transportation Science, 2007, 41 (4): 444- 456.
doi: 10.1287/trsc.1070.0210 |
95 | WANG Y. Prediction of weather impacted airport capacity using ensemble learning[C]//Proc. of the IEEE/AIAA 30th Digital Avionics Systems Conference, 2011: 2D6. |
96 |
BUXI G , HANSEN M . Generating day-of-operation probabilistic capacity scenarios from weather forecasts[J]. Transportation Research Part C: Emerging Technologies, 2013, 33, 153- 166.
doi: 10.1016/j.trc.2012.12.006 |
97 | LEIGHFISHER L B . Evaluating airfield capacity[M]. Washington, D C: Transportation Research Board, 2012: 31- 34. |
98 | BASPINAR B , KOYUNCU E . A data-driven air transportation delay propagation model using epidemic process models[J]. International Journal of Aerospace Engineering, 2016, 4836260. |
99 | 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38 (S1): 113- 119. |
WU X P , YANG H Y , HAN S C . Analysis of propreties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (S1): 113- 119. | |
100 | 张兆宁, 张佳. 大面积航班延误发生的预测方法[J]. 系统工程, 2020, 38 (4): 115- 121. |
ZHANG Z N , ZHANG J . Predicition method for the occurrence of large-scale flight delays[J]. Systems Engineering, 2020, 38 (4): 115- 121. |
[1] | 汤新民, 郑鹏程. 基于大地坐标系的IMM航空器短期航迹外推[J]. 系统工程与电子技术, 2022, 44(7): 2293-2301. |
[2] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
[3] | 毕可心, 吴明功, 张文斌, 温祥西, 杜坎. 基于速度障碍法的飞行冲突网络建模与分析[J]. 系统工程与电子技术, 2021, 43(8): 2163-2173. |
[4] | 李昂, 聂党民, 温祥西, 王泽坤, 杨诚修. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. |
[5] | 赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43(4): 1080-1088. |
[6] | 宋波, 叶伟, 孟祥辉. 基于多智能体强化学习的动态频谱分配方法综述[J]. 系统工程与电子技术, 2021, 43(11): 3338-3351. |
[7] | 彭芳, 吴军, 王帅, 向建军. 基于SVRGD的机载预警雷达自适应波束形成算法[J]. 系统工程与电子技术, 2021, 43(1): 83-90. |
[8] | 张菁, 何友, 彭应宁, 李刚. 新一代战斗机技术特征论证[J]. 系统工程与电子技术, 2018, 40(8): 1754-1759. |
[9] | 王攀, 陈云翔, 蔡忠义, 李超. 军用飞机修理线建模与修理能力分析[J]. 系统工程与电子技术, 2018, 40(6): 1294-1301. |
[10] | 颛孙少帅, 杨俊安, 刘辉, 黄科举. 基于正强化学习和正交分解的干扰策略选择算法[J]. 系统工程与电子技术, 2018, 40(3): 518-525. |
[11] | 王邑, 孙金标, 肖明清, 罗继勋. 基于类型2区间模糊K近邻分类器的动态武器目标分配方法研究[J]. 系统工程与电子技术, 2016, 38(6): 1314-1319. |
[12] | 苏志刚, 符笑娴, 郝敬堂. 基于动态三角剖分的潜在冲突筛选方法[J]. 系统工程与电子技术, 2016, 38(6): 1456-1461. |
[13] | 顾斌杰, 潘丰. 改进的v-支持向量回归机的v解路径算法[J]. 系统工程与电子技术, 2016, 38(1): 205-214. |
[14] | 朱晓辉,张军. 基于似然轨迹预测的空中交通复杂度评估方法[J]. 系统工程与电子技术, 2014, 36(2): 300-305. |
[15] | 王洪,金尔文,刘昌忠,吴宏刚. 多点定位TOA精确估计及同步误差校正算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 835-839. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||