系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 850-862.doi: 10.12305/j.issn.1001-506X.2022.03.18
郭斐然, 于剑桥*, 宋豹
收稿日期:
2021-03-03
出版日期:
2022-03-01
发布日期:
2022-03-10
通讯作者:
于剑桥
作者简介:
郭斐然(1997—), 男, 硕士研究生, 主要研究方向为飞行器总体设计|于剑桥(1972—), 男, 教授, 博士, 主要研究方向为飞行器总体设计、飞行力学与控制|宋豹(1995—), 男, 硕士研究生, 主要研究方向为飞行器总体设计
Feiran GUO, Jianqiao YU*, Bao SONG
Received:
2021-03-03
Online:
2022-03-01
Published:
2022-03-10
Contact:
Jianqiao YU
摘要:
针对体系作战中多弹种协同完成多类型作战任务的需求, 建立了以导弹装备体系效能为引导的弹种优化设计结构框架, 以综合考虑任务、成本和风险影响因素的装备体系效能最优为目标, 构建了指派模型, 并给出了该模型的约束条件。针对该优化问题的可行解空间较大、计算时间较长的特点, 设计了基于作战环的模型快速求解方法, 以加快设计过程。算例分析结果表明: 该指派模型能够实现导弹装备体系中最优弹种设计方案的求解, 同时引入作战环可以极大地缩小可行域, 从而显著提高设计计算效率。
中图分类号:
郭斐然, 于剑桥, 宋豹. 基于指派模型的导弹装备体系弹种优化设计[J]. 系统工程与电子技术, 2022, 44(3): 850-862.
Feiran GUO, Jianqiao YU, Bao SONG. Optimal design of missile types in missile equipment system based on assignment model[J]. Systems Engineering and Electronics, 2022, 44(3): 850-862.
表17
不同部件属性参数值的影响系数"
部件类型 | 属性 | 参数值 | 影响系数 |
导引头 | 有效作用距离/km | 8 | 0.8 |
9 | 0.9 | ||
10 | 1.0 | ||
IMU | 姿态精度/(°/h) | 1 | 1.0 |
2 | 0.9 | ||
3 | 0.8 | ||
位置精度/(m/h) | 1 | 1.0 | |
2 | 0.9 | ||
3 | 0.8 | ||
舵机 | 最大舵偏角/(°) | 25 | 0.8 |
30 | 0.9 | ||
35 | 1.0 | ||
最大舵偏角速度/(°/s) | 200 | 0.8 | |
225 | 0.9 | ||
250 | 1.0 | ||
发动机 | 推力/kN | 40 | 0.8 |
45 | 0.9 | ||
50 | 1.0 | ||
总冲/(kN·s) | 300 | 0.8 | |
350 | 0.9 | ||
400 | 1.0 | ||
战斗部 | 质量/kg | 150 | 0.8 |
175 | 0.9 | ||
200 | 1.0 |
表18
采用基于作战环的快速求解方法得到的最优弹种组合及参数值和相应体系效能绝对贡献度"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.005 00 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.007 80 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 150 | 0.000 90 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 175 | 0.002 80 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 81 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.003 60 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.004 40 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.007 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.000 07 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.002 80 |
S1M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.000 30 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 03 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.000 84 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.003 60 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.001 40 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.005 00 |
表19
采用割平面法得到的最优弹种组合及参数值和相应体系效能绝对贡献度"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
表20
采用分支定界法得到的最优弹种组合及参数值和相应体系效能绝对贡献度"
弹种 | 导引头有效作用距离/km | IMU姿态精度/(°/h) | IMU位置精度/(m/h) | 舵机最大舵偏角/(°) | 舵机最大舵偏角速度/(°/s) | 发动机推力/kN | 发动机总冲(kN·s) | 战斗部质量/kg | 体系效能绝对贡献度 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 150 | 0.000 66 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.001 50 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 150 | 0.004 20 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 30 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.005 00 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.007 80 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 150 | 0.000 90 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 175 | 0.002 80 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 81 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.003 60 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.006 30 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 175 | 0.000 73 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.004 40 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.007 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.009 90 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.000 24 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 175 | 0.003 00 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.002 10 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 40 | 300 | 200 | 0.004 90 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.002 90 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.005 70 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.008 40 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 45 | 350 | 200 | 0.001 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.000 07 |
S2M2C3P2I1 | 10 | 1 | 1 | 30 | 225 | 50 | 400 | 200 | 0.002 80 |
S1M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.000 30 |
S2M2C3P2I1 | 8 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.006 50 |
S2M2C3P2I1 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.009 20 |
S2M2C3P2I1 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.012 00 |
S2M2C3P2I1 | 9 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.002 30 |
S2M2C3P2I1 | 10 | 2 | 2 | 35 | 250 | 50 | 400 | 200 | 0.005 10 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 150 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 175 | 0.000 03 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.000 84 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 175 | 0.003 60 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 45 | 350 | 200 | 0.001 40 |
S2M2C3P2I2 | 9 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.002 20 |
S2M2C3P2I2 | 10 | 1 | 1 | 35 | 250 | 50 | 400 | 200 | 0.005 00 |
1 | 商巍, 赵涛, 环夏, 等. 导弹武器系统协同作战研究[J]. 战术导弹技术, 2018, (2): 31- 35, 48. |
SHANG W , ZHAO T , HUAN X , et al. Research on cooperative operation of missile weapon system[J]. Tactical Missile Technology, 2018, (2): 31- 35, 48. | |
2 |
李向林, 于本水. 防空导弹总体设计方法的新发展——弹族化设计[J]. 现代防御技术, 2002, 30 (3): 14- 20.
doi: 10.3969/j.issn.1009-086X.2002.03.004 |
LI X L , YU B S . New development of overall design method for air defense missile——family design[J]. Modern Defense Technology, 2002, 30 (3): 14- 20.
doi: 10.3969/j.issn.1009-086X.2002.03.004 |
|
3 |
邢恩峰, 钱建平, 赵国志. 面向大规模定制的弹药模块化设计及产品族规划研究[J]. 弹箭与制导学报, 2006, 26 (2): 582- 584, 587.
doi: 10.3969/j.issn.1673-9728.2006.02.184 |
XING E F , QIAN J P , ZHAO G Z . Research on modular design and product family planning of ammunition for mass customization[J]. Journal of projectile and guidance, 2006, 26 (2): 582- 584, 587.
doi: 10.3969/j.issn.1673-9728.2006.02.184 |
|
4 | 仝云. 防空导弹弹族多目标优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2011. |
TONG Y. Multi objective optimization design of air defense missile family[D]. Harbin: Harbin Engineering University, 2011. | |
5 |
孙晓峰. 针对不同质量战斗部的防空导弹弹族设计[J]. 现代防御技术, 2017, 45 (4): 50- 58.
doi: 10.3969/j.issn.1009-086x.2017.04.009 |
SUN X F . Design of air defense missile family for warheads of diffe-rent mass[J]. Modern Defense Technology, 2017, 45 (4): 50- 58.
doi: 10.3969/j.issn.1009-086x.2017.04.009 |
|
6 |
王克, 唐火红, 何其昌, 等. 混流生产线作业指派的优化方法研究[J]. 合肥工业大学学报(自然科学版), 2020, 43 (3): 316- 320.
doi: 10.3969/j.issn.1003-5060.2020.03.005 |
WANG K , TANG H H , HE Q C , et al. Research on the optimization method of job assignment in mixed model production line[J]. Journal of Hefei University of Technology (Natural Science Edition), 2020, 43 (3): 316- 320.
doi: 10.3969/j.issn.1003-5060.2020.03.005 |
|
7 | 田倩南, 李昆鹏, 李文莉, 等. 机场任务指派问题的优化方案研究[J]. 运筹与管理, 2019, 28 (11): 301- 308. |
TIAN Q N , LI K P , LI W L , et al. Research on optimization scheme of airport task assignment problem[J]. Operations Research and Management, 2019, 28 (11): 301- 308. | |
8 | AJAY K , CHINMAY P , SANTANU C . Task mapping and flow priority assignment of real-time industrial applications for network-on-clip based design[J]. Microprocessors and Microsystems, 2020, 342 (15): 4416- 4419. |
9 | 黄泽乾, 丁涛, 王雅. 自动化集装箱码头AGV调度研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43 (6): 1165- 1168. |
HUANG Z Q , DING T , WANG Y . Research on AGV scheduling of automated container terminals[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2019, 43 (6): 1165- 1168. | |
10 |
张超省, 王健, 李政民, 等. 作战工程保障行动中的一种战士-装备-任务指派模型及其求解[J]. 兵工学报, 2019, 40 (7): 1511- 1517.
doi: 10.3969/j.issn.1000-1093.2019.07.022 |
ZHANG C X , WANG J , LI Z M , et al. A soldier equipment task assignment model and its solution in combat engineering support operations[J]. Acta Ordnance, 2019, 40 (7): 1511- 1517.
doi: 10.3969/j.issn.1000-1093.2019.07.022 |
|
11 | 叶航航, 李泽仁, 刘浩, 等. 一种基于指派模型的导弹-目标分配算法[C]//中国自动化大会, 2018: 564-569. |
YE H H, LI Z R, LIU H, et al. A missile target assignment algorithm based on assignment model[C]//Proc. of the China Automation Conference, 2018: 564-569. | |
12 | XU J P , ZHOU X Y , WU D D . Portfolio selection using λ mean and hybrid entropy[J]. Annals of Operations Research, 2011, 185 (1): 1604- 1612. |
13 |
BUEDE D , BRESNICK T . Applications of decision analysis to the military systems acquisition process[J]. Interfaces, 1992, 22 (6): 110- 125.
doi: 10.1287/inte.22.6.110 |
14 |
BUCKSHAW L , PARNELL S , UNKENHOLZ L , et al. Mission oriented risk and design analysis of critical information systems[J]. Military Operations Research, 2005, 10 (2): 19- 38.
doi: 10.5711/morj.10.2.19 |
15 |
KANGASPUNTA J , LIESIÖ J , MILD P A . Cost-efficiency analysis of weapon system portfolios[J]. European Journal of Operational Research, 2012, 223 (1): 264- 275.
doi: 10.1016/j.ejor.2012.05.042 |
16 | 周宇. 基于能力的武器装备组合规划问题与方法[D]. 长沙: 国防科学技术大学, 2013. |
ZHOU Y. Problem and method of weapon equipment combination planning based on capability[D]. Changsha: University of Defense Science and Technology, 2013. | |
17 | 张骁雄, 葛冰峰. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F . Model and algorithm of weapon equipment combination planning for capability requirements[J]. Journal of National University of Defense Science and Techno-logy, 2017, 39 (1): 102- 108. | |
18 | 夏博远, 赵青松. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
XIA B Y , ZHAO Q S . Robust weapon system combination decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
19 |
钱晓超, 董晨, 陆志沣. 基于效能评估的武器装备体系优化设计方法[J]. 系统仿真技术, 2017, 13 (4): 286- 291, 362.
doi: 10.3969/j.issn.1673-1964.2017.04.004 |
QIAN X C , DONG C , LU Z F . Weapon system optimization design method based on effectiveness evaluation[J]. System Simulation Technology, 2017, 13 (4): 286- 291, 362.
doi: 10.3969/j.issn.1673-1964.2017.04.004 |
|
20 | 豆亚杰, 徐向前, 周哲轩, 等. 系统组合选择方法及典型军事应用[J]. 系统工程与电子技术, 2019, 41 (12): 2754- 2762. |
DOU Y J , XU X Q , ZHOU Z X , et al. System combination selection method and typical military applications[J]. Systems Engineering and Electronics, 2019, 41 (12): 2754- 2762. | |
21 | 张杰, 唐宏, 苏凯. 效能评估方法研究[M]. 北京: 国防工业出版社, 2009. |
ZHANG J , TANG H , SU K . Research on effectiveness evaluation method[M]. Beijing: National Defense Industry Press, 2009. | |
22 | 郭新宝. 一类基于AHP和0-1规划的导游指派问题模型[J]. 统计与决策, 2014, (15): 34- 37. |
GUO X B . A guide assignment problem model based on AHP and 0-1 programming[J]. Statistics and Decision Making, 2014, (15): 34- 37. | |
23 | 顾文亚, 孟祥瑞, 陈允杰. 运筹学: 数学规划(上)[M]. 镇江: 江苏大学出版社, 2015. |
GU W Y , MENG X R , CHEN Y J . Operations research: mathematical programming (I)[M]. Zhenjiang: Jiangsu University Press, 2015. | |
24 | 郑烨, 王明杰, 樊娟. 基于匈牙利法的企业员工任务分配问题研究[J]. 统计与决策, 2011, (5): 182- 185. |
ZHENG Y , WANG M J , FAN J . Research on task allocation of enterprise employees based on Hungarian law[J]. Statistics and Decision Making, 2011, (5): 182- 185. | |
25 | 邓成梁, 黄卫来, 周康. 运筹学的原理和方法[M]. 3版 武汉: 华中科技大学出版社, 2014. |
DENG C L , HUANG W L , ZHOU K . Principles and methods of operations research[M]. 3rd ed Wuhan: Huazhong University of Science and Technology Press, 2014. | |
26 |
杨明歌, 常水珍. 求解整数规划的割平面法的研究[J]. 洛阳师范学院学报, 2014, 33 (5): 1- 4, 12.
doi: 10.3969/j.issn.1009-4970.2014.05.001 |
YANG M G , CHANG S Z . Research on cutting plane method for integer programming[J]. Journal of Luoyang Normal University, 2014, 33 (5): 1- 4, 12.
doi: 10.3969/j.issn.1009-4970.2014.05.001 |
|
27 | 徐晓辉. 数学建模应用中整数线性规划问题的常用解法初探[J]. 现代职业教育, 2021, (7): 178- 179. |
XU X H . A preliminary study on the common solutions of integer linear programming problems in the application of mathematical modeling[J]. Modern Vocational Education, 2021, (7): 178- 179. | |
28 | 仝哲, 张炳江, 李慧. 关于存在多组最优解的整数线性规划问题的割平面法的研究[J]. 数学的实践与认识, 2017, 47 (5): 158- 164. |
TONG Z , ZHANG B J , LI H . Research on cutting plane method for integer linear programming problems with multiple optimal solutions[J]. Practice and Understanding of Mathema-tics, 2017, 47 (5): 158- 164. | |
29 | 熊伟. 运筹学[M]. 3版 北京: 机械工业出版社, 2014: 81 |
XIONG W . Operations research[M]. 3rd ed Beijing: China Machine Press, 2014: 81 | |
30 | WAN C Q, XIONG W T, ZHAO Q S, et al. Operation loop based optimization model for resource allocation in defense[C]// Proc. of the Chinese Control and Decision Conference, 2018: 416-421. |
31 |
谭跃进, 张小可, 杨克巍. 武器装备体系网络化描述与建模方法[J]. 系统管理学报, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
TAN Y J , ZHANG X K , YANG K W . Networked description and modeling method of weapon system of systems[J]. Journal of Systems Management, 2012, 21 (6): 781- 786.
doi: 10.3969/j.issn.1005-2542.2012.06.009 |
|
32 | WAN C Q . Optimization model for resource allocation to military countermeasures versus probabilistic threat[J]. Applied Sciences, 2018, 8 (2): 368- 396. |
[1] | 周琛, 宋笔锋, 尚柏林, 王耀祖, 科尔沁. 基于作战网络可靠度的体系贡献率评估[J]. 系统工程与电子技术, 2021, 43(7): 1875-1883. |
[2] | 魏东涛, 刘晓东, 李鹏, 陈玉金. 基于节点重要度与改进信息熵的装备体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3614-3623. |
[3] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
[4] | 杨圩生, 王钰, 杨洋, 唐亮. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
[5] | 马武彬, 王锐, 王威超, 吴亚辉, 邓苏, 黄宏斌. 基于进化多目标优化的微服务组合部署与调度策略[J]. 系统工程与电子技术, 2020, 42(1): 90-100. |
[6] | 刘鹏, 赵丹玲, 谭跃进, 杨克巍, 豆亚杰. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1763-1770. |
[7] | 梁家林, 熊伟. 基于作战环的武器装备体系能力评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1810-1819. |
[8] | 杨克巍, 杨志伟, 谭跃进, 赵青松. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321. |
[9] | 罗承昆, 陈云翔, 王莉莉, 王泽洲, 常政. 基于作战环和改进信息熵的体系效能评估方法[J]. 系统工程与电子技术, 2019, 41(1): 73-80. |
[10] | 秦茂森, 赵丹玲, 杨克巍. 基于作战网络的反潜活动效能评估[J]. 系统工程与电子技术, 2018, 40(7): 1513-1520. |
[11] | 罗金亮, 王雷, 谢文杰, 李鹏佳. 对敌网络一体化防空体系的联合压制策略[J]. 系统工程与电子技术, 2017, 39(11): 2491-2500. |
[12] | 赵丹玲, 谭跃进, 李际超, 夏博远, 豆亚杰, 姬升平. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247. |
[13] | 罗凯, 张明智, 吴曦. 基于作战环的空间信息时效网关键节点分析模型[J]. 系统工程与电子技术, 2016, 38(7): 1572-1576. |
[14] | 吴虎胜1,2, 张凤鸣2, 战仁军1, 李〓浩2, 梁晓龙3. 利用改进的二进制狼群算法求解多维背包问题[J]. 系统工程与电子技术, 2015, 37(5): 1084-1091. |
[15] | 吴虎胜, 张凤鸣, 战仁军, 汪送, 张超. 求解0-1背包问题的二进制狼群算法[J]. 系统工程与电子技术, 2014, 36(8): 1660-1667. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||