1 |
AMIN M G . Through-the-wall radar imaging[M]. Boca Raton: Chemical Rubber Company Press, 2011.
|
2 |
YANG D G , ZHU Z L , ZHANG J C , et al. The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar[J]. Sensors, 2021, 21 (2): 402.
doi: 10.3390/s21020402
|
3 |
CLCCHETTI R , CLCCHETTI V , FARAONE A , et al. A compact high-gain wideband lens vivaldi antenna for wireless communications and through-the-wall imaging[J]. IEEE Trans.on Antennas and Propagation, 2020, 69 (6): 3177- 3192.
|
4 |
RANDAZZO A , PONTI C , FEDELI A , et al. A through-the-wall imaging approach based on a TSVD/variable-exponent lebesgue-space method[J]. Remote Sensing, 2021, 13 (11): 2028.
doi: 10.3390/rs13112028
|
5 |
KLIBANOV M V , SMIRNOV A V , KHOA V A , et al. Through-the-wall nonlinear SAR imaging[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021,
|
6 |
SEMIH D , MEHMET N , MEHMET C , et al. Truncated singular value decomposition for through-the-wall microwave imaging application[J]. IET Microwaves, Antennas & Propagation, 2020, 14 (4): 260- 267.
|
7 |
TANG V H , BOUZERDOUM A , PHUNG S L . Compressive radar imaging of stationary indoor targets with low-rank plus jointly sparse and total variation regularizations[J]. IEEE Trans.on Image Processing, 2020, 29 (4598): 4613.
|
8 |
MUJA M , LOWE D G . Scalable nearest neighbor algorithms for high dimensional data[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 36 (11): 2227- 2240.
doi: 10.1109/TPAMI.2014.2321376
|
9 |
TIVIVE F H C , BOUZERDOUM A , AMIN M G . A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 53 (4): 2108- 2122.
|
10 |
SOLIMENE R , CUCCARO A . Front wall clutter rejection methods in TWI[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 11 (6): 1158- 1162.
|
11 |
YOON Y S , AMIN M G . Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging[J]. IEEE Trans.on Geoscience and Remote Sensing, 2009, 47 (9): 3192- 3208.
doi: 10.1109/TGRS.2009.2019728
|
12 |
ZHANG Y, VENKATACHALAM A S, HUSTON D, et al. Advanced signal processing method for ground penetrating radar feature detection and enhancement[C]//Proc. of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, 2014, 9063: 906318.
|
13 |
POTIN D , DUFLOS E , VANHEEGHE P . Landmines ground-penetrating radar signal enhancement by digital filtering[J]. IEEE Trans.on Geoscience and Remote Sensing, 2006, 44 (9): 2393- 2406.
doi: 10.1109/TGRS.2006.875356
|
14 |
CHEN X, CHEN W D. Clutter reduction based on coefficient of variation in through-wall radar imaging[C]//Proc. of the IEEE Radar Conference, 2013.
|
15 |
ULANDER L M H , HELLSTEN H , STENSTROM G . Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (3): 760- 776.
doi: 10.1109/TAES.2003.1238734
|
16 |
LI J X , CHEN X P , XU H , et al. Artifacts suppression using correlation-weighted back projection imaging algorithm for chaotic GPR[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 3507305.
|
17 |
SOUNDY A W R , PANCKHURST B J , BROWN P , et al. Comparison of enhanced noise model performance based on analysis of civilian GPS data[J]. Sensors, 2020, 20 (21): 6050.
doi: 10.3390/s20216050
|
18 |
MAHAFZA B R , ELSHERBENI A . Matlab simulations for radar systems design[M]. Boca Raton: Chemical Rubber Company Press, 2004.
|
19 |
KUNDU D , RAQAB M Z . Generalized Rayleigh distribution: different methods of estimations[J]. Computational Statistics & Data Analysis, 2005, 49 (1): 187- 200.
|
20 |
ALJOHANI M , MREBIT A , LO MONTE L , et al. Radar imaging using pseudo-coherent marine radar technology[J]. IET Radar, Sonar & Navigation, 2020, 14 (6): 905- 916.
|
21 |
POLI L , OLIVERI G , MASSA A . Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach[J]. Journal of the Optical Society of America A, 2013, 30 (6): 1261- 1272.
doi: 10.1364/JOSAA.30.001261
|
22 |
LU Z J , QIN Q , SHI H Y , et al. SAR moving target imaging based on convolutional neural network[J]. Digital Signal Processing, 2020, 106, 102832.
doi: 10.1016/j.dsp.2020.102832
|
23 |
SU P F , TARKOMA S , PELLIKKA P K E . Band ranking via extended coefficient of variation for hyperspectral band selection[J]. Remote Sensing, 2020, 12 (20): 3319.
doi: 10.3390/rs12203319
|
24 |
REED G F , LYNN F , MEADE B D . Use of coefficient of varia- tion in assessing variability of quantitative assays[J]. Clinical and Vaccine Immunology, 2002, 9 (6): 1235- 1239.
doi: 10.1128/CDLI.9.6.1235-1239.2002
|
25 |
KUMLU D . GPR clutter suppression by online stochastic tensor decomposition[J]. Remote Sensing Letters, 2021, 12 (3): 237- 246.
|
26 |
GARCIA-FERNANDEZ M , ALVAREZ-LOPEZ Y , HERAS F L . Autonomous airborne 3D SAR imaging system for subsurface sensing: UWB-GPR on board a UAV for landmine and IED detection[J]. Remote Sensing, 2019, 11 (20): 2357.
doi: 10.3390/rs11202357
|
27 |
KIM S , LEE J . Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track[J]. Pattern Recognition, 2012, 45 (1): 393- 406.
doi: 10.1016/j.patcog.2011.06.009
|
28 |
NAM S K , CHOI J H . Comparative analysis of cartesian trajectory and multivane rajectory using ACR phantom in MRI: using image intensity uniformity test and low-contrast object detectability test[J]. Journal of Radiological Science and Technology, 2019, 42 (1): 39- 46.
doi: 10.17946/JRST.2019.42.1.39
|
29 |
KAMOEN V , EL HADDAD M , DE BACKER T , et al. Outcome of degenerative nonprolapse mitral regurgitation using the ave-rage pixel intensity method[J]. Echocardiography, 2020, 37 (9): 1329- 1335.
doi: 10.1111/echo.14695
|
30 |
DEVANEY A J , MARENGO E A , GRUBER F K . Time-reversal-based imaging and inverse scattering of multiply scattering point targets[J]. The Journal of the Acoustical Society of America, 2005, 118 (5): 3129- 3138.
doi: 10.1121/1.2042987
|