1 |
马彦恒, 李根, 熊旭颖, 等. 机动平台大斜视SAR压缩感知成像方法[J]. 系统工程与电子技术, 2020, 42 (10): 2197- 2206.
doi: 10.3969/j.issn.1001-506X.2020.10.07
|
|
MA Y H , LI G , XIONG X Y , et al. High-squint compressed sensing SAR imaging mounted on maneuvering platforms[J]. Systems Engineering and Electronics, 2020, 42 (10): 2197- 2206.
doi: 10.3969/j.issn.1001-506X.2020.10.07
|
2 |
陈晨, 魏中浩, 徐志林, 等. 基于高斯字典原子稀疏表示的高精度宽角SAR成像方法[J]. 系统工程与电子技术, 2019, 41 (11): 2471- 2478.
|
|
WEI C , WEI Z H , XU Z L , et al. High-precision wide angle SAR imaging method based on sparse representation of Gaussian dictionary atoms[J]. Systems Engineering and Electronics, 2019, 41 (11): 2471- 2478.
|
3 |
徐志林, 魏中浩, 吴辰阳, 等. 基于l_1正则化的多通道滑动聚束SAR成像[J]. 系统工程与电子技术, 2019, 41 (2): 304- 310.
|
|
XU Z L , WEI Z H , WU C Y , et al. Multichannel sliding spotlight SAR imaging based on l_1 regularization[J]. Systems Engineering and Electronics, 2019, 41 (2): 304- 310.
|
4 |
YANG L , BI G , XING M D , et al. Airborne sar moving target signatures and imagery based on LVD[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (11): 5958- 5971.
doi: 10.1109/TGRS.2015.2429678
|
5 |
DONOHO D. L . Compressed sensing[J]. IEEE Trans.on Information Theory, 2006, 52 (4): 1289- 1306.
doi: 10.1109/TIT.2006.871582
|
6 |
YU L , SUN H , BARBOT J P , et al. Bayesian compressive sensing for cluster structured sparse signals[J]. Signal Proces-sing, 2012, 92 (1): 259- 269.
doi: 10.1016/j.sigpro.2011.07.015
|
7 |
YANG L , LI P C , ZHANG S , et al. Cooperative multitask learning for sparsity-driven SAR imagery and nonsystematic error autocalibration[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (7): 5132- 5147.
doi: 10.1109/TGRS.2020.2972972
|
8 |
ZAHNG Q J, LI T F, ZHU Y, et al. SAR image despeckling based on a novel total variation regularization model and Gf-3 data[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 2362-2365.
|
9 |
KONGSKOV R D, DONG Y Q. Directional total generalized variation regularization for impulse noise removal[C]//Proc. of the International Conference on Scale Space and Variational Methods in Computer Vision, 2017.
|
10 |
PARISOTTO S, LELLMANN S, MASNOU S, et al. Higher-order total directional variation: imaging applications[EB/OL]. [2020-10-05]. https://arxiv.org/abs/1812.05023.
|
11 |
STAMATIOS L , ANASTASIOS R , PETROS M , et al. Structure tensor total variation[J]. SIAM Journal on Imaging Sciences, 2015, 8 (2): 1090- 1122.
doi: 10.1137/14098154X
|
12 |
GUNGOR A, CRTIN M, GUVEN H E. Autofocused compressive SAR imaging based on the alternating direction method of multipliers[C]//Proc. of the IEEE Radar Conference, 2017: 1573-1576.
|
13 |
DONOHO D L , MALEKI A , MONTANARI A . The noise-sensitivity phase transition in compressed sensing[J]. IEEE Trans.on Information Theory, 2011, 57 (10): 6920- 6941.
doi: 10.1109/TIT.2011.2165823
|
14 |
YANG L , ZHAO L F , BI G A , et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse bayesian learning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (2): 2254- 2267.
|
15 |
MALEKI A , ANITORI L , YANG Z , et al. Asymptotic analysis of complex LASSO via complex approximate message pas-sing(CAMP)[J]. IEEE Trans.on Information Theory, 2013, 59 (7): 4290- 4308.
doi: 10.1109/TIT.2013.2252232
|
16 |
BI H , ZHANG B C , ZHU X X , et al. L_1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (6): 3426- 3440.
doi: 10.1109/TGRS.2017.2671519
|
17 |
GUVENH E , GUNGOR A , CRTIN M . An augmented lagrangian method for complex-valued compressed SAR imaging[J]. IEEE Trans.on Computational Imaging, 2016, 2 (3): 235- 250.
doi: 10.1109/TCI.2016.2580498
|