系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 777-785.doi: 10.12305/j.issn.1001-506X.2022.03.09

• 传感器与信号处理 • 上一篇    下一篇

基于稀疏重构的海杂波抑制和目标提取算法

李文静1, 李卓林1,*, 袁振涛2   

  1. 1. 北京无线电测量研究所, 北京 100854
    2. 空军研究院, 北京 100085
  • 收稿日期:2020-12-20 出版日期:2022-03-01 发布日期:2022-03-10
  • 通讯作者: 李卓林
  • 作者简介:李文静(1996—), 女, 硕士研究生, 主要研究方向为雷达杂波抑制|李卓林(1972—), 女, 研究员, 硕士, 主要研究方向为雷达总体设计|袁振涛(1983—), 男, 高级工程师, 博士, 主要研究方向为雷达总体设计

Sea clutter suppression and target extraction algorithm based on sparse reconstruction

Wenjing LI1, Zhuolin LI1,*, Zhentao YUAN2   

  1. 1. Beijing Institute of Radio Measurement, Beijing 100854, China
    2. Air Force Academy, Beijing 100085, China
  • Received:2020-12-20 Online:2022-03-01 Published:2022-03-10
  • Contact: Zhuolin LI

摘要:

在杂波较强的环境下, 雷达目标回波往往淹没在杂波中难以被检测, 尤其在海杂波背景下, 目标的多普勒频率有可能会落在杂波频率范围中, 此时传统的杂波抑制方法就产生了一定的局限性。针对此问题, 依据杂波、目标信号的稀疏特性和二者在多普勒频率分布特性上的不同, 设计了对应的时频域过完备字典; 再通过形态成分分析算法求出目标和杂波分量的稀疏系数向量; 将对应字典和稀疏系数向量相乘,恢复出目标和杂波分量, 同时实现了杂波抑制和目标信息提取。最后, 通过实测数据验证了该算法的有效性。

关键词: 杂波抑制, 稀疏重构, 形态成分分析, 目标提取

Abstract:

In a strong clutter environment, radar target echoes are often submerged in clutter and difficult to detect. Especially under the background of sea clutter, the Doppler frequency of target may fall in clutter frequency range. At this time, traditional clutter suppression method has limitations. In response to this problem, corresponding time-frequency domain over-complete dictionaries are designed, which are based on the sparse characteristics and the differences in Doppler frequency range of target and clutter. Then use morphological component analysis algorithm to find the sparse coefficients of target and clutter components. The target and clutter components are recovered by multiplying the corresponding dictionary and sparse coefficients, achieving clutter suppression and target information extraction. Finally, the effectiveness of the algorithm is verified by measured data.

Key words: clutter suppression, sparse reconstruction, morphological component analysis, target extraction

中图分类号: