1 |
SEIFI Z , GHORBANI A , ABDIPOUR A , et al. Analysis and experimental study of radiative microwave pulses effects on the nonlinear performance of a low-noise amplifier[J]. IEEE Trans.on Plasma Science, 2021, 42 (5): 321- 338.
|
2 |
JIANG Y S , ZHA H , SHI J T , et al. A compact x-band microwave pulse compressor using a corrugated cylindrical cavity[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 69 (3): 1586- 1593.
doi: 10.1109/TMTT.2021.3053913
|
3 |
ZHANG D X , CHENG E W , WAN H J , et al. Prediction of electromagnetic compatibility for dynamic datalink of UAV[J]. IEEE Trans.on Electromagnetic Compatibility, 2019, 61 (5): 1474- 1482.
doi: 10.1109/TEMC.2018.2867641
|
4 |
RADASKY W A , BAUM C E , WIK M W . Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)[J]. IEEE Trans.on Electromagnetic Compatibility, 2004, 46 (3): 314- 321.
doi: 10.1109/TEMC.2004.831899
|
5 |
HU D Z , WEI G H , PAN X D , et al. Investigation of the radiation immunity testing method in reverberation chambers[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (6): 1791- 1797.
doi: 10.1109/TEMC.2017.2698141
|
6 |
LI W , WEI G H , PAN X D , et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Trans.on Electromagnetic Compatibility, 2018, 60 (2): 520- 528.
doi: 10.1109/TEMC.2017.2720961
|
7 |
ZHANG D X , ZHOU X , CHENG E W , et al. Investigation on effects of HPM pulse on UAV's datalink[J]. IEEE Trans.on Electromagnetic Compatibility, 2020, 62 (3): 829- 839.
doi: 10.1109/TEMC.2019.2915285
|
8 |
杜雪, 魏光辉, 任仕召, 等. 扫频雷达单频连续波电磁辐射阻塞效应分析[J]. 系统工程与电子技术, 2020, 42 (12): 2742- 2746.
doi: 10.3969/j.issn.1001-506X.2020.12.09
|
|
DU X , WEI G H , REN S Z , et al. Analysis of blocking effect for single frequency continuous wave electromagnetic radiation in swept frequency radar[J]. System Engineering and Electronics, 2020, 42 (12): 2742- 2746.
doi: 10.3969/j.issn.1001-506X.2020.12.09
|
9 |
CAMP M , GARBE H . Susceptibility of personal computer systems to fast transient electromagnetic pulses[J]. IEEE Trans.on Electromagnetic Compatibility, 2006, 48 (4): 829- 833.
doi: 10.1109/TEMC.2006.882844
|
10 |
GJB 1389A—2005. 系统电磁兼容性要求[S]. 北京: 中国人民解放军总装备部, 2005.
|
|
GJB 1389A—2005. Electromagnetic compatibility requirements of systems[S]. Beijing: The General Reserve Department of the PLA, 2005.
|
11 |
PIGNARI S A , CANAVERO F G . Theoretical assessment of bulk current injection versus radiation[J]. IEEE Trans.on Electromagnetic Compatibility, 1996, 38 (2): 469- 477.
|
12 |
GRASSI F , FILIPPO M , PIGNARI S A . Circuit modeling of injection probes for bulk current injection[J]. IEEE Trans.on Electromagnetic Compatibility, 2007, 49 (3): 563- 576.
doi: 10.1109/TEMC.2007.902385
|
13 |
HE K , YU D J , GUO B S , et al. An equivalent dynamic test system for immunity characterization of the UAV positioning module using bulk current injection method[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2 (4): 161- 164.
doi: 10.1109/LEMCPA.2020.3037499
|
14 |
NAYAK B P , RAMESH S , RAJEEV S , et al. Model-based system-level EMI/EMC simulation for BCI pass-fail prediction[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2 (2): 28- 33.
doi: 10.1109/LEMCPA.2020.2979227
|
15 |
ORLANDI A . Circuit model for bulk current injection test on shielded coaxial cables[J]. IEEE Trans.on Electromagnetic Compatibility, 2003, 45 (4): 602- 615.
doi: 10.1109/TEMC.2003.819060
|
16 |
RASEK G A , LOOS S E . Correlation of direct current injection (DCI) and free-field illumination for HIRF certification[J]. IEEE Trans.on Electromagnetic Compatibility, 2008, 50 (3): 499- 503.
doi: 10.1109/TEMC.2008.926872
|
17 |
卢新福, 魏光辉, 潘晓东, 等. 基于定向耦合网络的强电磁场辐照等效测试方法[J]. 电波科学学报, 2013, 28 (5): 877- 882.
|
|
LU X F , WEI G H , PAN X D , et al. Experimental methods equivalent to high electromagnetic field radiation based on directional coupling network[J]. Chinese Journal of Radio Science, 2013, 28 (5): 877- 882.
|
18 |
LU X F , WEI G H , PAN X D . A double differential-mode current injection method based on directional couplers for HIRF verification testing of interconnected systems[J]. Journal of Electromagnetic Waves and Applications, 2014, 28 (3): 346- 359.
doi: 10.1080/09205071.2013.870500
|
19 |
GRASSI F , FILIPPO M , PIGNARI S A . Bulk current injection in twisted wire pairs with not perfectly balanced terminations[J]. IEEE Trans.on Electromagnetic Compatibility, 2013, 55 (6): 1293- 1301.
doi: 10.1109/TEMC.2013.2255295
|
20 |
PIGNARI S A , SPADACINI G , GRASSI F . Alternative radiated susceptibility test methods at unit level[J]. IEEE Electromagnetic Compatibility Magazine, 2020, 9 (1): 61- 68.
|
21 |
SPADACINI G , PIGNARI S A . A bulk current injection test conforming to statistical properties of radiation-induced effects[J]. IEEE Trans.on Electromagnetic Compatibility, 2004, 46 (3): 446- 458.
doi: 10.1109/TEMC.2004.831896
|
22 |
SPADACINI G , GRASSI F , PIGNARI S A . Bulk current injection as an alternative radiated susceptibility test enforcing a statistically quantified overtesting margin[J]. IEEE Trans.on Electromagnetic Compatibility, 2018, 60 (5): 1270- 1278.
doi: 10.1109/TEMC.2018.2810074
|
23 |
GRASSI F , GIORDANO S , FILIPPO M . Use of double bulk current injection for susceptibility testing of avionics[J]. IEEE Trans. on Electromagnetic Compatibility, 2008, 50 (3): 524- 535.
doi: 10.1109/TEMC.2008.926810
|
24 |
BADINI L , SPADACINI G , GRASSI F , et al. A rationale for statistical correlation of conducted and radiated susceptibility testing in aerospace EMC[J]. IEEE Trans.on Electromagnetic Compatibility, 2017, 59 (5): 1576- 1585.
doi: 10.1109/TEMC.2017.2678762
|
25 |
CROVETTI P S , FIORI F . A critical assessment of the closed-loop bulk current injection immunity test performed in compliance with ISO 11452-4[J]. IEEE Trans.on Instrumentation and Mea-surement, 2011, 60 (4): 1291- 1297.
doi: 10.1109/TIM.2010.2084870
|
26 |
GJB 8848—2016. 系统电磁环境效应试验方法[S]. 北京: 中央军委装备发展部, 2016.
|
|
GJB 8848—2016. Electromagnetic environment effects test methods for systems[S]. Beijing: Equipment development Department of the Central Military Commission, 2016.
|
27 |
卢新福, 魏光辉, 潘晓东, 等. 端口非线性条件下双端差模注入方法的可行性研究[J]. 高电压技术, 2015, 41 (12): 4213- 4219.
|
|
LU X F , WEI G H , PAN X D , et al. Study on feasibility of double differential mode current injection method under condition of terminal nonlinearity[J]. High Voltage Engineering, 2015, 41 (12): 4213- 4219.
|
28 |
卢新福, 魏光辉, 潘晓东. 电流注入等效替代射频连续波辐照试验技术研究[J]. 高电压技术, 2013, 39 (3): 675- 681.
doi: 10.3969/j.issn.1003-6520.2013.03.025
|
|
LU X F , WEI G H , PAN X D . Experimental technology of current injection substitution for radio frequency continuous wave radiation[J]. High Voltage Engineering, 2013, 39 (3): 675- 681.
doi: 10.3969/j.issn.1003-6520.2013.03.025
|
29 |
李伟, 魏光辉, 潘晓东, 等. 典型通信装备电磁敏感度判据研究[J]. 微波学报, 2016, 32 (6): 70- 75.
|
|
LI W , WEI G H , PAN X D , et al. Research on electromagnetic susceptibility criterion for typical communication equipment[J]. Journal of Microwave, 2016, 32 (6): 70- 75.
|
30 |
李伟, 魏光辉, 潘晓东, 等. 典型通信装备带内双频连续波电磁辐射效应预测方法[J]. 系统工程与电子技术, 2016, 38 (11): 2474- 2480.
doi: 10.3969/j.issn.1001-506X.2016.11.04
|
|
LI W , WEI G H , PAN X D , et al. Electromagnetic radiation effects forecasting method about in-band dual-frequency continuous wave for typical communication equipment[J]. Systems Engineering and Electronics, 2016, 38 (11): 2474- 2480.
doi: 10.3969/j.issn.1001-506X.2016.11.04
|