系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 737-745.doi: 10.12305/j.issn.1001-506X.2022.03.04

• 电子技术 • 上一篇    下一篇

基于神经网络的符号化飞行动作识别

方伟1,2, 王玉1,*, 闫文君1,2, 林冲1   

  1. 1. 海军航空大学航空作战勤务学院, 山东 烟台 264001
    2. 海战场信息感知与融合技术国家级实验教学中心, 山东 烟台 264001
  • 收稿日期:2021-04-22 出版日期:2022-03-01 发布日期:2022-03-10
  • 通讯作者: 王玉
  • 作者简介:方伟(1977—), 男, 教授, 博士, 主要研究方向为装备仿真与虚拟现实|王玉(1990—), 男, 硕士研究生, 主要研究方向为装备仿真与虚拟现实|闫文君(1987—), 男, 副教授, 博士, 主要研究方向为智能信息处理|林冲(1994—), 男, 硕士研究生, 主要研究方向为智能信息处理
  • 基金资助:
    国家自然科学基金(91538201);泰山学者工程专项经费基金(ts201511020);信息系统安全技术重点实验室基金(6142111190404)

Symbolized flight action recognition based on neural network

Wei FANG1,2, Yu WANG1,*, Wenjun YAN1,2, Chong LIN1   

  1. 1. School of Aviation Support, Naval Aviation University, Yantai 264001, China
    2. National Experimental Teaching Center of Marine Battlefield Information Perception and Fusion Technology, Yantai 264001, China
  • Received:2021-04-22 Online:2022-03-01 Published:2022-03-10
  • Contact: Yu WANG

摘要:

飞行动作识别是飞行训练评估和空战智能决策等多项关键技术的基础, 实现飞行动作的快速高效识别具有重大意义。对此, 提出一种基于神经网络符号化模型的方法, 实现对基本飞行动作和复杂飞行动作高效识别。首先, 利用微分分割的思想对飞行参数进行切片处理, 然后通过卷积神经网络(convolutional neural networks, CNN)和长短期记忆(long-short term memory, LSTM)神经网络实现飞行动作的模块化处理, 有效代替了传统方法中对原始数据的逻辑推理。并且该方法可以利用基本飞行动作对飞行过程实现飞行数据分割, 具有良好的扩展性, 能够快速处理批量飞参数据。最后对13种基本飞行动作、两种复杂飞行动作和整段飞行数据进行仿真实验。仿真结果表明, 该方法具有良好的识别性能。

关键词: 动作识别, 微分分割, 卷积神经网络, 长短期记忆网络

Abstract:

Flight action recognition is the basis of many key technologies, such as flight training evaluation and air combat intelligent decision-making. It is of great significance to realize fast and efficient flight action recognition. Thus, a method based on symbolic neural network is proposed to realize the efficient recognition of basic flight actions and complex flight actions. Firstly, the idea of differential segmentation is used to slice the flight parameters, and then the convolution neural network (CNN) and long-short term memory (LSTM) neural network are used to realize the modular processing of flight actions, which effectively replaces the traditional method of logical reasoning for the original data. And the method can use the basic flight action to segment the flight data. It has good scalability and can process a large number of flight data quickly. Finally, the simulation experiments of thirteen basic flight actions, two complex flight actions and the whole flight data are carried out. The simulation results show that the method has good recognition performance.

Key words: action recognition, differential segmentation, convolution neural network (CNN), long-short term memory (LSTM) network

中图分类号: