1 |
HU Y S , LI H , CHANG Z G , et al. Scheduling strategy for multimedia heterogeneous high-speed train networks[J]. IEEE Trans.on Vehicular Technology, 2017, 66 (4): 3265- 3279.
doi: 10.1109/TVT.2016.2587080
|
2 |
SUN N H , ZHAO Y M , SUN L , et al. Distributed and dynamic resource management for wireless service delivery to high-speed trains[J]. IEEE Access, 2017, 5, 620- 632.
doi: 10.1109/ACCESS.2016.2646461
|
3 |
TANG Q, LONG H, YANG H J, et al. An enhanced LMMSE channel estimation under high speed railway scenarios[C]//Proc. of the IEEE International Conference on Communications Workshops, 2017: 999-1004.
|
4 |
王志刚. 高铁无线通信干扰检测及识别技术[J]. 通讯世界, 2020, 27 (4): 74- 75.
doi: 10.3969/j.issn.1006-4222.2020.04.048
|
|
WANG Z G . Interference detection and identification technology for high-speed railway wireless communication[J]. Communication World, 2020, 27 (4): 74- 75.
doi: 10.3969/j.issn.1006-4222.2020.04.048
|
5 |
刘旭阳. 5G通信信道估计和均衡方法研究[J]. 通信技术, 2020, 53 (11): 2653- 2657.
doi: 10.3969/j.issn.1002-0802.2020.11.006
|
|
LIU X Y . A novel algorithm for estimation and equalization of 5G communication channel[J]. Communications Technology, 2020, 53 (11): 2653- 2657.
doi: 10.3969/j.issn.1002-0802.2020.11.006
|
6 |
ZHOU T , WANG Y J , WANG C X , et al. Multi-feature fusion based recognition and relevance analysis of propagation scenes for high-speed railway channels[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (8): 8107- 8118.
doi: 10.1109/TVT.2020.2999313
|
7 |
LV C W , LIN J C , YANG Z C . Channel prediction for millimeter wave MIMO-OFDM communications in rapidly time-varying frequency-selective fading channels[J]. IEEE Access, 2019, 7, 15183- 15195.
doi: 10.1109/ACCESS.2019.2893619
|
8 |
SHARMA P , CHANDRA K . Prediction of state transitions in Rayleigh fading channels[J]. IEEE Trans.on Vehicular Technology, 2007, 56 (2): 416- 425.
doi: 10.1109/TVT.2007.891421
|
9 |
HALLEN A D , HALLEN H , YANG T S . Long range prediction and reduced feedback for mobile radio adaptive OFDM systems[J]. IEEE Trans.on Wireless Communications, 2006, 5 (10): 2723- 2732.
doi: 10.1109/TWC.2006.04219
|
10 |
DONG Z X, ZHAO Y S, CHEN Z H. Support vector machine for channel prediction in high-speed railway communication systems[C]//Proc. of the IEEE MTT-S International Wireless Symposium, 2018.
|
11 |
MIN D. Short-time prediction of traffic flow based on PSO optimized SVM[C]//Proc. of the International Conference on Intelligent Transportation, Big Data & Smart City, 2018: 41-45.
|
12 |
HUANG M T, CHANG Z Y. Time prediction of logistics distribution based on BP-SVM[C]//Proc. of the Chinese Automation Congress, 2019: 4590-4593.
|
13 |
JIANG W, STRUFE M, SCHOTTEN H D. Long-range MIMO channel prediction using recurrent neural networks[C]//Proc. of the IEEE 17th Annual Consumer Communications & Networking Conference, 2020.
|
14 |
PENG T H, ZHANG R Q, CHENG X, et al. LSTM-based channel prediction for secure massive MIMO communications under imperfect CSI[C]//Proc. of the IEEE International Conference on Communications, 2020.
|
15 |
LUO C Q , JI J L , WANG Q L . Channel state information prediction for 5G wireless communications: a deep learning approach[J]. IEEE Trans.on Network Science and Engineering, 2020, 7 (1): 227- 236.
doi: 10.1109/TNSE.2018.2848960
|
16 |
JIANG W , SCHOTTEN H D . Deep learning for fading channel prediction[J]. IEEE Open Journal of the Communications Society, 2020, 1, 320- 332.
doi: 10.1109/OJCOMS.2020.2982513
|
17 |
LIAO R F, WEN H, WU J S, et al. The Rayleigh fading channel prediction via deep learning[J]. Wireless Communications and Mobile Computing, 2018. DOI: 10.1155.2018.6497340.
|
18 |
HUANG G B , ZHU Q Y , SIEW C.K . Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70, 489- 501.
doi: 10.1016/j.neucom.2005.12.126
|
19 |
YU W C , ZHUANG F Z , HE Q , et al. Learning deep representations via extreme learning machines[J]. Neurocomputing, 2015, 31 (2): 308- 315.
|
20 |
LIANG N Y , HUANG G B , SARATCHANDRAN P , et al. A fast and accurate online sequential earning algorithm for feedforward networks[J]. IEEE Trans.on Neural Networks, 2006, 17 (6): 1411- 1423.
doi: 10.1109/TNN.2006.880583
|
21 |
ABRISHAMKAR F, IRVINE J. Comparison of current solutions for the provision of voice services to passengers on high speed trains[C]//Proc. of the IEEE Vehicular Technology Conference, 2000: 1498-1505.
|
22 |
GOLLER M. Application of GSM in high-speed trains: measurements and simulations[C]//Proc. of the IEEE Colloquium on Radio Communications in Transportation, 1995.
|
23 |
TSG-RAN4-37 (R4-051274). Initial ideal simulation results for different high-speed propagation scenarios[S]. 3GPP, 2005.
|
24 |
OUYANG T H , WANG C G , YU Z J , et al. NOx measurements in vehicle exhaust using advanced deep ELM networks[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 3927- 3945.
|
25 |
YANG L , ZHAO Q , JING Y D . Channel equalization and detection with ELM-based regressors for OFDM systems[J]. IEEE Communications Letters, 2020, 24 (1): 86- 89.
doi: 10.1109/LCOMM.2019.2951404
|
26 |
QING C J , CAI B , YANG Q Y , et al. ELM-based superimposed CSI feedback for FDD massive MIMO system[J]. IEEE Access, 2020, 8, 53408- 53418.
doi: 10.1109/ACCESS.2020.2980969
|
27 |
STOIANOVIC M B, SEKULOVIC N M, PANAJOTOVIC A S. A comparative performance analysis of extreme learning machine and echo state network for wireless channel prediction[C]//Proc. of the 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications, 2019: 356-359.
|
28 |
LIU J K , MEI K , ZHANG X F , et al. Online extreme learning machine-based channel estimation and equalization for OFDM systems[J]. IEEE Communications Letters, 2019, 23 (7): 1276- 1279.
doi: 10.1109/LCOMM.2019.2916797
|
29 |
CHENG T , HE Y , HE W C , et al. Low complexity channel prediction using TFOS-ELM method for massive MIMO systems[J]. IEEE Access, 2020, 8, 36681- 36690.
doi: 10.1109/ACCESS.2020.2975298
|
30 |
宋刚. 基于ELM的深度学习算法及其在时间序列预测中的应用研究[D]. 南京: 南京航空航天大学, 2018.
|
|
SONG G. ElM-based deep learning algorithm and its application in time series prediction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|