系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 651-661.doi: 10.12305/j.issn.1001-506X.2022.02.36
李兰花1,2, 黄晓霞3,*
收稿日期:
2021-02-22
出版日期:
2022-02-18
发布日期:
2022-02-24
通讯作者:
黄晓霞
作者简介:
李兰花 (1989—), 女, 博士研究生, 主要研究方向为绿色无线通信网络的资源分配和效能优化设计|黄晓霞 (1981—), 女, 教授, 博士研究生导师, 博士, 主要研究方向为绿色无线通信网络、智能无线网络和网络资源优化
基金资助:
Lanhua LI1,2, Xiaoxia HUANG3,*
Received:
2021-02-22
Online:
2022-02-18
Published:
2022-02-24
Contact:
Xiaoxia HUANG
摘要:
环境信号的不确定性导致不可预测的谱能机会。传输机会和能源供应的缺乏给反向散射通信网络的多址接入设计带来了极大的挑战。本文针对多载波非正交多址接入(multicarrier non-orthogonal multiple access, MC-NOMA)增强型反向散射网络, 提出了一种分阶段优化算法实现均衡调控下的谱能效率最大化, 该问题是非凸的且难以求解。因此, 首先将该问题分解成子载波分配和反射系数优化两个子问题, 然后基于Gale-Shapley匹配原理提出多对一稳定匹配算法求解最佳的子载波分配, 最后利用凸优化理论求反射系数优化。仿真结果表明, 与动态MC-NOMA方案(dynamic MC-NOMA, D-NOMA)和正交多址接入方案(orthogonal multiple access, OMA)相比, 所提优化方案在谱效和能效上均有显著的提升。
中图分类号:
李兰花, 黄晓霞. MC-NOMA增强型反向散射网络中的谱能效率均衡优化[J]. 系统工程与电子技术, 2022, 44(2): 651-661.
Lanhua LI, Xiaoxia HUANG. Spectrum and energy efficiency tradeoff in MC-NOMA enhanced backscatter networks[J]. Systems Engineering and Electronics, 2022, 44(2): 651-661.
1 | 张平, 陶运铮, 张治. 5G若干关键技术评述[J]. 通信学报, 2016, 37 (7): 15- 29. |
ZHANG P , TAO Y Z , ZHANG Z . Survey of several key technologies for 5G[J]. Journal on Communication, 2016, 37 (7): 15- 29. | |
2 | 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4 (1): 3- 11. |
YOU X H , YIN H , WU H G . On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4 (1): 3- 11. | |
3 |
杨震, 杨宁, 徐敏捷. 面向物联网应用的人工智能相关技术研究[J]. 电信技术, 2016, 5, 16- 19, 23.
doi: 10.3969/j.issn.1000-1247.2016.05.003 |
YANG Z , YANG N , XU M J . Research on artificial intelligence technology for Internet of Things[J]. Telecommunications Technology, 2016, 5, 16- 19, 23.
doi: 10.3969/j.issn.1000-1247.2016.05.003 |
|
4 | 施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54 (5): 907- 924. |
SHI W S , SUN H , CAO J , et al. Edge computing—an emerging computing model for the internet of everything era[J]. Journal of Computer Research and Development, 2017, 54 (5): 907- 924. | |
5 | 王公仆, 熊轲, 刘铭, 等. 反向散射通信技术与物联网[J]. 物联网学报, 2017, 1 (1): 67- 75. |
WANG G P , XIONG K , LIU M , et al. Backscatter communication technology and Internet of Things[J]. Chinese Journal on Internet of Things, 2017, 1 (1): 67- 75. | |
6 | 陶琴, 钟财军, 张朝阳. 面向无源物联网的环境反向散射通信技术[J]. 物联网学报, 2019, 3 (2): 28- 34. |
TAO Q , ZHONG C J , ZHANG C Y . Ambient backscatter communications technology for battery less IoT[J]. Chinese Journal on Internet of Things, 2019, 3 (2): 28- 34. | |
7 | 于季弘, 刘昊, 王帅. 无源物联网综述——从感知、通信与管理的视角[J]. 重庆邮电大学学报(自然科学版), 2020, 32 (5): 736- 751. |
YU J H , LIU H , WANG S . Survey on passive internet of things: from the perspective of sensing, communications and management[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32 (5): 736- 751. | |
8 |
LIU V , PARKS A , TALLA V , et al. Ambient backscatter: wireless communication out of thin air[J]. ACM SIGCOMM Computer Communication Review, 2013, 43 (4): 39- 50.
doi: 10.1145/2534169.2486015 |
9 | PARKS A N , LIU A , GOLLAKOTA S , et al. Turbocharging ambient backscatter communication[J]. ACM SIGCOMM Computer Communication Review, 2014, 44 (4): 619- 630. |
10 | YANG C, GUMMESON J, SAMPLE A. Riding the airways: ultra-wideband ambient backscatter via commercial broadcast systems[C]//Proc. of the IEEE Conference on Computer Communications, 2017. |
11 | ZHANG P, JOSEPHSON C, BHARADIA D, et al. Freerider: backscatter communication using commodity radios[C]//Proc. of the 13th International Conference on Emerging Networking Experiments and Technologies, 2017: 389-401. |
12 | KELLOGG B, PARKS A, GOLLAKOTA S, et al. Wi-Fi backscatter: internet connectivity for RF-powered devices[C]// Proc. of the ACM Special Interest Group on Data Communi-cation, 2014: 607-618. |
13 |
BHARADIA D , JOSHI K R , KOTARU M , et al. Backfi: high throughput WIFI backscatter[J]. ACM SIGCOMM Computer Communication Review, 2015, 45 (4): 283- 296.
doi: 10.1145/2829988.2787490 |
14 |
KELLOGG B , TALLA V , SMITH J R , et al. PASSIVE WI-FI: bringing low power to WIFI transmissions[J]. GetMobile: Mobile Computing and Communications, 2017, 20 (3): 38- 41.
doi: 10.1145/3036699.3036711 |
15 | ENSWORTH J F, REYNOLDS M S. Every smart phone is a backscatter reader: modulated backscatter compatibility with bluetooth 4.0 low energy (BLE) devices[C]//Proc. of the IEEE International Conference on RFID, 2015: 78-85. |
16 | WANG A, IYER V, TALLA V, et al. FM backscatter: enabling connected cities and smart fabrics[C]//Proc. of the 14th USENIX Symposium on Networked Systems Design and Implementation, 2017: 243-258. |
17 | IYER V, TALLA V, KELLOGG B, et al. Inter-technology backscatter: towards internet connectivity for implanted devices[C]//Proc. of the ACM Special Interest Group on Data Communication, 2016: 356-369. |
18 | PENG Y, SHANGGUAN L, HU Y, et al. PLoRa: a passive long-range data network from ambient LoRa transmissions[C]// Proc. of the ACM Special Interest Group on Data Communi-cation, 2018: 147-160. |
19 | VARSHNEY A, HARMS O, PÉREZ-PENICHET C, et al. Lorea: a backscatter architecture that achieves a long communication range[C]//Proc. of the 15th ACM Conference on Embedded Network Sensor Systems, 2017. |
20 | TALLA V , HESSAR M , KELLOGG B , et al. Lora backscatter: enabling the vision of ubiquitous connectivity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1 (3): 1- 24. |
21 |
GUO H , LONG R , LIANG Y C . Cognitive backscatter network: a spectrum sharing paradigm for passive IoT[J]. IEEE Wireless Communications Letters, 2019, 8 (5): 1423- 1426.
doi: 10.1109/LWC.2019.2919835 |
22 |
XIAO S , GUO H , LIANG Y C . Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Trans.on Wireless Communications, 2019, 18 (6): 3222- 3235.
doi: 10.1109/TWC.2019.2912203 |
23 |
HOANG D T , NIYATO D , WANG P , et al. Ambient backscatter: a new approach to improve network performance for RF-powered cognitive radio networks[J]. IEEE Trans.on Communications, 2017, 65 (9): 3659- 3674.
doi: 10.1109/TCOMM.2017.2710338 |
24 | LYU B , YOU C , YANG Z , et al. The optimal control policy for RF-powered backscatter communication networks[J]. IEEE Trans.on Vehicular Technology, 2017, 67 (3): 2804- 2808. |
25 |
VAN HUYNH N , HOANG D T , NIYATO D , et al. Optimal time scheduling for wireless-powered backscatter communication networks[J]. IEEE Wireless Communications Letters, 2018, 7 (5): 820- 823.
doi: 10.1109/LWC.2018.2827983 |
26 |
GONG S , HUANG X , XU J , et al. Backscatter relay communications powered by wireless energy beamforming[J]. IEEE Trans.on Communications, 2018, 66 (7): 3187- 3200.
doi: 10.1109/TCOMM.2018.2809613 |
27 | LU X , JIANG H , NIYATO D , et al. Wireless-powered device-to-device communications with ambient backscattering: performance modeling and analysis[J]. IEEE Trans.on Wireless Communications, 2017, 17 (3): 1528- 1544. |
28 | ZHAO R, ZHU F, FENG Y, et al. OFDMA-enabled Wi-Fi backscatter[C]//Proc. of the 25th Annual International Conference on Mobile Computing and Networking, 2019. |
29 | MI N, ZHANG X, HE X, et al. CBMA: coded-backscatter multiple access[C]//Proc. of the IEEE 39th International Conference on Distributed Computing Systems, 2019: 799-809. |
30 | JIANG C, HE Y, JIN M, et al. Canon: exploiting channel diversity for reliable parallel decoding in backscatter communication[C]//Proc. of the IEEE 26th International Conference on Network Protocols, 2018: 356-366. |
31 |
JIN M , HE Y , MENG X , et al. Fliptracer: practical parallel decoding for backscatter communication[J]. IEEE/ACM Trans.on Networking, 2019, 27 (1): 330- 343.
doi: 10.1109/TNET.2018.2890109 |
32 |
HU P , ZHANG P , GANESAN D . Laissez-faire: fully asymmetric backscatter communication[J]. ACM SIGCOMM Computer Communication Review, 2015, 45 (4): 255- 267.
doi: 10.1145/2829988.2787477 |
33 | HESSAR M, NAJAFI A, GOLLAKOTA S. Netscatter: enabling large-scale backscatter networks[C]//Proc. of the 16th USENIX Symposium on Networked Systems Design and Implementation, 2019: 271-284. |
34 | 毕奇, 梁林, 杨姗, 等. 面向5G的非正交多址接入技术[J]. 电信科学, 2015, 31 (5): 20- 27. |
BI Q , LIANG L , YANG S , et al. Non-orthogonal multiple access technology for 5G systems[J]. Telecommunications Science, 2015, 31 (5): 20- 27. | |
35 |
董园园, 巩彩红, 李华, 等. 面向6G的非正交多址接入关键技术[J]. 移动通信, 2020, 44 (6): 57- 62, 69.
doi: 10.3969/j.issn.1006-1010.2020.06.009 |
DONG Y Y , GONG C H , LI H , et al. Key technologies of 6G oriented non orthogonal multiple access[J]. Mobile Communications, 2020, 44 (6): 57- 62, 69.
doi: 10.3969/j.issn.1006-1010.2020.06.009 |
|
36 |
KIM T Y , KIM D I . Novelsparse-coded ambient backscatter communication for massive IoT connectivity[J]. Energies, 2018, 11 (7): 1780.
doi: 10.3390/en11071780 |
37 |
GUO J , ZHOU X , DURRANI S , et al. Design of non-orthogonal multiple access enhanced backscatter communication[J]. IEEE Trans.on Wireless Communications, 2018, 17 (10): 6837- 6852.
doi: 10.1109/TWC.2018.2864741 |
38 | FARAJZADEH A, ERCETIN O, YANIKOMEROGLU H. UAV data collection over NOMA backscatter networks: UAV altitude and trajectory optimization[C]//Proc. of the IEEE International Conference on Communications, 2019. |
39 | ZEB S, ABBAS Q, HASSAN S A, et al. NOMA enhanced backscatter communication for green IoT networks[C]//Proc. of the 16th International Symposium on Wireless Communication Systems, 2019: 640-644. |
40 | YANG G , XU X , LIANG Y C . Resource allocation in NOMA-enhanced backscatter communication networks for wireless powered IoT[J]. IEEE Wireless Communications Letters, 2019, 9 (1): 117- 120. |
41 | YANG G , YUAN D , LIANG Y C , et al. Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT[J]. IEEE Internet of Things Journal, 2018, 6 (2): 2612- 2625. |
42 | ARDAKANI F D, WONG V W S. Joint reflection coefficient selection and subcarrier allocation for backscatter systems with NOMA[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2020. DOI: 10.1109/WCNC45663.20209120844. |
43 | XU Y , QIN Z , GUI G , et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS Guarantee[J]. IEEE Wireless Communications Letters, 2020, 10 (2): 353- 357. |
44 | KHAN W U, SIDHU G A S, LI X W, et al. NOMA-enabled wireless powered backscatter communications for secure and green IoT networks[M]//Wireless-Powered Backscatter Communications for Internet of Things. Cham, Springer, 2021: 103-131. |
45 | 王正强, 成蕖, 樊自甫, 等. 非正交多址系统资源分配研究综述[J]. 电信科学, 2018, 34 (8): 136- 146. |
WANG Z Q , CHENG Q , FAN Z F , et al. A survey of resource allocation in non-orthogonal multiple access systems[J]. Telecommunications Science, 2018, 34 (8): 136- 146. | |
46 |
LEI L , YUAN D , HO C K , et al. Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation[J]. IEEE Trans.on Wireless Communications, 2016, 15 (12): 8580- 8594.
doi: 10.1109/TWC.2016.2616310 |
47 |
SUN Y , NG D W K , DING Z , et al. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems[J]. IEEE Trans.on Communications, 2017, 65 (3): 1077- 1091.
doi: 10.1109/TCOMM.2017.2650992 |
48 | ZHAI D , DU J . Spectrum efficient resource management for multi-carrier-based NOMA networks: a graph-based method[J]. IEEE Wireless Communications Letters, 2017, 7 (3): 388- 391. |
49 | ROSTAMI M, GUMMESON J, KIAGHADI A, et al. Polymorphic radios: a new design paradigm for ultra-low power communication[C]//Proc. of the Conference of the ACM Special Interest Group on Data Communication, 2018: 446-460. |
50 | LI L, HUANG X, FANG X, et al. Efficienthierarchical multiple access for ambient backscatter wireless networks[C]//Proc. of the IEEE Global Communications Conference, 2019. |
51 |
GALE D , SHAPLEY L S . College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962, 69 (1): 9- 15.
doi: 10.1080/00029890.1962.11989827 |
52 | HACI H, ZHU H. Performance of non-orthogonal multiple access with a novel interference cancellation method[C]//Proc. of the IEEE International Conference on Communications, 2015: 2912-2917. |
53 |
LIU J , LI Y , SONG G , et al. Detection andanalysis of symbol-asynchronous uplink NOMA with equal transmission power[J]. IEEE Wireless Communications Letters, 2019, 8 (4): 1069- 1072.
doi: 10.1109/LWC.2019.2906184 |
54 |
YANG G , HO C K , GUAN Y L . Multi-antenna wireless energy transfer forbackscatter communication systems[J]. IEEE Journal on Selected Areas in Communications, 2015, 33 (12): 2974- 2987.
doi: 10.1109/JSAC.2015.2481258 |
55 |
TANG J , SO D K C , ALSUSA E , et al. Resource efficiency: a new paradigm on energy efficiency and spectral efficiency tradeoff[J]. IEEE Trans.on Wireless Communications, 2014, 13 (8): 4656- 4669.
doi: 10.1109/TWC.2014.2316791 |
56 | NESTEROV Y , NEMIROVSKII A . Interior-point polynomial algorithms in convex programming[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994. |
57 | NIKITIN P V, RAO K V S. Antennas and propagation in UHF RFID systems[C]//Proc. of the IEEE International Conference on RFID, 2008: 277-288. |
58 | ALI M S , TABASSUM H , HOSSAIN E . Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems[J]. IEEE Access, 2016, 4, 6325- 6343. |
[1] | 孙林, 毛忠阳, 康家方, 张磊. 基于最大化能效的海上中继通信频谱分配算法[J]. 系统工程与电子技术, 2022, 44(8): 2661-2667. |
[2] | 陈善学, 吴生金, 谷博文. 基于时间反演的上行NOMA系统能效优化算法[J]. 系统工程与电子技术, 2022, 44(3): 1007-1013. |
[3] | 庄陵, 戴蕾, 刘胜珠, 王光宇. 多模索引调制OFDM频谱及能量效率优化方案[J]. 系统工程与电子技术, 2020, 42(3): 719-726. |
[4] | 邱斌, 肖海林. 非完美信道信息下LTE-V2V通信最优功率控制[J]. 系统工程与电子技术, 2018, 40(7): 1608-1614. |
[5] | 王媛, 刘文龙, 金明录. 结合非正交子载波的空频索引调制技术[J]. 系统工程与电子技术, 2018, 40(1): 191-197. |
[6] | 吴湛击, 车慧, 李少冉, 王雨晴. 超奈奎斯特的频谱效率与参数优化分析[J]. 系统工程与电子技术, 2016, 38(5): 1153-. |
[7] | 黄天聪, 何昊宸, 冯文江, 贾年龙. AF-OFDM非对称通信双向中继系统能效优化[J]. 系统工程与电子技术, 2015, 37(11): 2591-2597. |
[8] | 林晓辉, 谭宇, 张俊玲, 杨超, 刘静. 无线传输中基于马尔可夫决策的高能效策略[J]. 系统工程与电子技术, 2014, 36(7): 1433-1438. |
[9] | 姜学鹏, 洪贝, 王宏伟. 基于链路通信效率的高能效路由转发策略[J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1469-1473. |
[10] | 刘宇航, 祝明发, 崔吉顺, 肖利民. 基于CMP的高密度计算机多目标设计方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 806-812. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||