系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 637-643.doi: 10.12305/j.issn.1001-506X.2022.02.34

• 制导、导航与控制 • 上一篇    下一篇

考虑输入饱和的直升机机动飞行LPV控制

李硕1, 张绍杰1,*, 严鹏1, 张涵1, 鲁可1,2   

  1. 1. 南京航空航天大学自动化学院, 江苏 南京 211106
    2. 中国直升机设计研究所直升机旋翼动力学重点实验室, 江西 景德镇 333001
  • 收稿日期:2021-05-28 出版日期:2022-02-18 发布日期:2022-02-24
  • 通讯作者: 张绍杰
  • 作者简介:李硕(1996—), 男, 硕士, 主要研究方向为飞行器控制|张绍杰(1978—), 男, 副教授, 博士, 主要研究方向为非线性系统的故障诊断与容错控制、飞行控制|严鹏(1995—), 男, 硕士, 主要研究方向为飞行器控制|张涵(1998—), 男, 硕士, 主要研究方向为直升机控制|鲁可(1985—), 男, 高级工程师, 博士, 主要研究为直升机飞行动力学与飞行控制
  • 基金资助:
    航空科学基金(201957052002);江苏省自然科学基金(BK20201291)

LPV control for helicopter maneuvering flight considering input saturation

Shuo LI1, Shaojie ZHANG1,*, Peng YAN1, Han ZHANG1, Ke LU1,2   

  1. 1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    2. Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen 333001, China
  • Received:2021-05-28 Online:2022-02-18 Published:2022-02-24
  • Contact: Shaojie ZHANG

摘要:

针对直升机机动飞行过程中存在的输入饱和问题, 提出了一种基于参数依赖Lyapunov的状态反馈控制方法。首先根据直升机非线性模型建立纵向线性变参数(linear parameter varying, LPV)模型, 并采用逆仿真数值分析方法对悬停机动科目进行轨迹建模。基于吸引域与不变集理论, 利用参数化线性矩阵不等式(parameterized linear matrix inequalities, PLMI), 分析闭环系统的稳定条件。利用松弛变量技术将控制器PLMI条件转化为易于求解的线性矩阵不等式(linear matrix inequalities, LMI)条件, 求解悬停机动轨迹跟踪控制律。仿真结果表明了所提模型和控制方法的可行性和有效性。

关键词: 线性变参数, 仿射参数依赖, 输入饱和, 机动飞行, 松弛变量

Abstract:

In view of the input saturation problem of helicopter maneuvering flight, a state feedback control method based on the parameter-dependent Lyapunov function is proposed. Based on the nonlinear model of the helicopter, the longitudinal linear parameter varying (LPV) model of the helicopter is established, and the trajectory of hovering maneuvering course is modeled by the inverse simulation numerical analysis method. Based on the theory of domain of attraction and set invariance, the stabilization conditions of the closed-loop system are obtained by using parameterized linear matrix inequalities (PLMI). Then, the PLMI condition of the controller is transformed into the linear matrix inequalities (LMI) condition by using the slack variable technique, and the control law of the hovering maneuver trajectory tracking is obtained. Simulation results show the feasibility and effectiveness of the proposed model and the control method.

Key words: linear parameter varying (LPV), affine parameter dependent, input saturation, maneuvering flight, slack variable

中图分类号: