系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 546-556.doi: 10.12305/j.issn.1001-506X.2022.02.24
褚凯轩1,*, 常天庆1, 孔德鹏2, 张雷1, 孙皓泽3
收稿日期:
2021-01-11
出版日期:
2022-02-18
发布日期:
2022-02-24
通讯作者:
褚凯轩
作者简介:
褚凯轩(1993—), 男, 博士研究生, 主要研究方向为坦克火力分配、智能决策|常天庆(1963—), 男, 教授, 博士, 主要研究方向为坦克火控智能化|孔德鹏(1990—), 男, 工程师, 博士, 主要研究方向为火力分配、智能决策|张雷(1973—), 男, 副教授, 博士, 主要研究方向为火控系统智能化|孙皓泽(1989—), 男, 工程师, 博士, 主要研究方向为装备数据管理与应用
基金资助:
Kaixuan CHU1,*, Tianqing CHANG1, Depeng KONG2, Lei ZHANG1, Haoze SUN3
Received:
2021-01-11
Online:
2022-02-18
Published:
2022-02-24
Contact:
Kaixuan CHU
摘要:
为了解决坦克分队进攻战斗中的兵力部署和火力协同问题, 提出坦克阵地部署模型和坦克火力分配模型, 前者解决坦克分队从集结区域到作战区域的兵力分配问题, 后者解决坦克接敌后的火力协同问题。针对坦克作战中的对抗特性, 建立确定型火力对抗模型, 在火力分配模型中体现敌我动态对抗过程。为了求取坦克阵地部署和火力分配最优方案, 采取双层迭代策略, 底层迭代求解火力分配模型, 上层迭代调用底层迭代的结果, 寻优坦克阵地部署最优方案。算法方面, 基于模型的具体特点和先验知识, 对人工蜂群(artifitial bee colony, ABC)算法进行有针对性的设计, 提高了算法的收敛速度和收敛精度。仿真实验说明了本文对人工蜂群算法设计的有效性和双层迭代寻优策略的合理性。
中图分类号:
褚凯轩, 常天庆, 孔德鹏, 张雷, 孙皓泽. 基于蜂群算法的坦克阵地部署与火力分配模型[J]. 系统工程与电子技术, 2022, 44(2): 546-556.
Kaixuan CHU, Tianqing CHANG, Depeng KONG, Lei ZHANG, Haoze SUN. Bee colony algorithm based model of tank troop deployment and firepower allocation[J]. Systems Engineering and Electronics, 2022, 44(2): 546-556.
表2
射击区域对目标毁伤概率"
射击区域 | 目标 | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 0.25 | 0.30 | 0.20 | 0.15 | 0.15 | 0.15 | 0.20 | 0.15 | 0.20 | 0.15 | 0.15 | 0.15 | 0.15 | 0 | 0 |
2 | 0.20 | 0.20 | 0.20 | 0.25 | 0.10 | 0.15 | 0.20 | 0.10 | 0.20 | 0 | 0.25 | 0.25 | 0.10 | 0 | 0.10 |
3 | 0 | 0.15 | 0.30 | 0.10 | 0.20 | 0.25 | 0.15 | 0.30 | 0 | 0 | 0.10 | 0.15 | 0 | 0.10 | 0.15 |
4 | 0 | 0.20 | 0.15 | 0.35 | 0.15 | 0 | 0.15 | 0.25 | 0.10 | 0.10 | 0 | 0 | 0.15 | 0 | 0.20 |
5 | 0.15 | 0.10 | 0.20 | 0 | 0.25 | 0.20 | 0.30 | 0 | 0.30 | 0.25 | 0.30 | 0.10 | 0.30 | 0.10 | 0.15 |
6 | 0.15 | 0.15 | 0.15 | 0.25 | 0.30 | 0 | 0.25 | 0.10 | 0 | 0.15 | 0.20 | 0 | 0.20 | 0.20 | 0.20 |
7 | 0.20 | 0.15 | 0.25 | 0 | 0.20 | 0.15 | 0.15 | 0 | 0.15 | 0.20 | 0.25 | 0.40 | 0 | 0.15 | 0 |
8 | 0.05 | 0.10 | 0 | 0.10 | 0.15 | 0.25 | 0 | 0.20 | 0.20 | 0.20 | 0.15 | 0.30 | 0.15 | 0.20 | 0.15 |
9 | 0 | 0 | 0.25 | 0.10 | 0.20 | 0.15 | 0.15 | 0 | 0.15 | 0.25 | 0 | 0.20 | 0.25 | 0.30 | 0.20 |
10 | 0 | 0 | 0.15 | 0.30 | 0.25 | 0.20 | 0.25 | 0.20 | 0.10 | 0.15 | 0.15 | 0.20 | 0.20 | 0.15 | 0.35 |
表3
目标对射击区域坦克毁伤概率"
射击区域 | 目标 | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 0.55 | 0.50 | 0.45 | 0.45 | 0.50 | 0.20 | 0.15 | 0.15 | 0.25 | 0.20 | 0.25 | 0.35 | 0.30 | 0.25 | 0.20 |
2 | 0.30 | 0.60 | 0.45 | 0.30 | 0.30 | 0.15 | 0.25 | 0.25 | 0.30 | 0.45 | 0.40 | 0.20 | 0.20 | 0.20 | 0.20 |
3 | 0.30 | 0.50 | 0.35 | 0.45 | 0.45 | 0.30 | 0.35 | 0.30 | 0.45 | 0.35 | 0.40 | 0.30 | 0.35 | 0.45 | 0.50 |
4 | 0.40 | 0.50 | 0.55 | 0.50 | 0.65 | 0.30 | 0.25 | 0.30 | 0.40 | 0.50 | 0.45 | 0.55 | 0.65 | 0.50 | 0.40 |
5 | 0.25 | 0.35 | 0.70 | 0.40 | 0.50 | 0.55 | 0.35 | 0.40 | 0.60 | 0.45 | 0.45 | 0.40 | 0.45 | 0.45 | 0.40 |
6 | 0.30 | 0.25 | 0.55 | 0.55 | 0.40 | 0.50 | 0.45 | 0.55 | 0.50 | 0.40 | 0.55 | 0.40 | 0.45 | 0.50 | 0.35 |
7 | 0.40 | 0.25 | 0.20 | 0.30 | 0.30 | 0.40 | 0.65 | 0.45 | 0.45 | 0.55 | 0.45 | 0.35 | 0.55 | 0.45 | 0.45 |
8 | 0.30 | 0.35 | 0.40 | 0.55 | 0.30 | 0.25 | 0.50 | 0.50 | 0.40 | 0.55 | 0.65 | 0.45 | 0.45 | 0.35 | 0.50 |
9 | 0.35 | 0.20 | 0.20 | 0.45 | 0.30 | 0.50 | 0.25 | 0.55 | 0.40 | 0.30 | 0.35 | 0.35 | 0.35 | 0.60 | 0.55 |
10 | 0.20 | 0.30 | 0.30 | 0.40 | 0.35 | 0.45 | 0.30 | 0.40 | 0.55 | 0.35 | 0.20 | 0.55 | 0.40 | 0.55 | 0.70 |
表5
5种算法求解M1实验测试报告"
规模 | 战例 | 指标 | ABC-NEH算法 | RNADE算法 | IABCI算法 | 标准ABC算法 | 本文算法 |
小规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 3.038×10-4 8.691×10-4 87 100 | 9.028×10-4 1.564×10-3 73 100 | 1.244×10-3 1.562×10-3 55 100 | 6.078×10-3 6.153×10-3 16 73 | 1.670×10-5 1.670×10-4 99 100 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 0 0 100 100 | 2.781×10-6· 2.781×10-5 99 100 | 0 0 100 100 | 4.695×10-3 8.7×10-3 69 77 | 0 0 100 100 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 1.390×10-3 3.463×10-3 86 86 | 2.305×10-3 4.523×10-3 78 78 | 4.022×10-3 6.473×10-3 68 68 | 1.761×10-2 9.973×10-3 12 12 | 0 0 100 100 | |
中规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 2.087×10-2 4.989×10-3 0 1 | 1.025×10-2 5.258×10-3 4 44 | 2.867×10-2 6.159×10-3 0 0 | 4.176×10-2 8.021×10-3 0 0 | 2.225×10-3 2.232×10-3 38 100 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 1.631×10-2 4.683×10-3 0 8 | 8.311×10-3 5.245×10-3 5 53 | 2.305×10-2 5.616×10-3 0 3 | 3.578×10-2 7.128×10-3 0 0 | 1.941×10-3 1.997×10-3 30 100 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 1.593×10-2 4.513×10-3 0 10 | 1.220×10-2 4.807×10-3 1 22 | 2.145×10-2 4.544×10-3 0 0 | 3.139×10-2 5.690×10-3 0 0 | 4.103×10-3 2.681×10-3 3 95 | |
大规模 | Y1 | Mean Std SR(100%)/% SR(99%)/% | 3.768×10-2 4.868×10-3 0 0 | 1.271×10-2 4.442×10-3 0 18 | 4.749×10-2 5.591×10-3 0 0 | 6.188×10-2 6.032×10-3 0 0 | 9.152×10-3 3.124×10-3 0 50 |
Y2 | Mean Std SR(100%)/% SR(99%)/% | 3.310×10-2 5.156×10-3 0 0 | 8.236×10-3 4.241×10-3 0 52 | 4.126×10-2 5.193×10-3 0 0 | 5.349×10-2 6.716×10-3 0 0 | 5.505×10-3 2.712×10-3 0 80 | |
Y3 | Mean Std SR(100%)/% SR(99%)/% | 3.452×10-2 5.583×10-3 0 0 | 8.316×10-3 4.232×10-3 0 52 | 4.360×10-2 6.935×10-3 0 0 | 6.034×10-2 6.880×10-3 0 0 | 5.536×10-3 2.762×10-3 1 84 |
表7
5种算法求解M2实验测试报告"
规模 | 指标 | qABC算法 | GRABC算法 | eABC算法 | 标准ABC算法 | 本文算法 |
小规模 | Mean Std SR(100%)/% SR(99%)/% | 3.221×10-3 5.339×10-3 96 100 | 2.141×10-3 3.982×10-3 96 100 | 1.338×10-4 1.338×10-4 100 100 | 5.201×10-3 6.017×10-3 92 100 | 0 0 100 100 |
中规模 | Mean Std SR(100%)/% SR(99%)/% | 3.318×10-3 7.212×10-3 12 80 | 4.231×10-3 4.414×10-3 16 88 | 3.012×10-3 3.787×10-3 16 90 | 5.250×10-3 6.722×10-3 4 56 | 2.101×10-3 3.016×10-3 28 92 |
大规模 | Mean Std SR(100%)/% SR(99%)/% | 2.235×10-2 4.555×10-3 0 32 | 9.134×10-3 1.092×10-2 0 36 | 8.776×10-3 2.712×10-3 0 44 | 4.414×10-2 1.321×10-2 0 8 | 6.120×10-3 3.100×10-3 4 68 |
1 |
CAI H P , LIU J X , CHEN Y W , et al. Survey of the research on dynamic weapon target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17 (3): 559- 565.
doi: 10.1016/S1004-4132(06)60097-2 |
2 |
王正元, 谭跃进. 坦克会战中动态武器-目标分配问题求解方法[J]. 国防科技大学学报, 2003, 25 (6): 56- 61.
doi: 10.3969/j.issn.1001-2486.2003.06.013 |
WANG Z Y , TAN Y J . A solution to dynamic weapon-target assignment in the tank warfare[J]. Journal of National University of Defense Technology, 2003, 25 (6): 56- 61.
doi: 10.3969/j.issn.1001-2486.2003.06.013 |
|
3 | 赵烨南, 杜伟伟, 陈铁健, 等. 基于粒子群优化算法的坦克火力分配方法[J]. 科技创新与应用, 2020, (11): 124- 126. |
ZHAO Y N , DU W W , CHEN T J , et al. A tank fire allocation method based on particle Swarm optimization algorithm[J]. Technology Innovation and Application, 2020, (11): 124- 126. | |
4 | 常天庆, 陈军伟, 郝娜, 等. 装甲分队动态武器目标分配中蚁群算法终止控制[J]. 系统工程与电子技术, 2015, 37 (2): 343- 347. |
CHANG T Q , CHEN J W , HAO N , et al. Terminating control of act colony algorithm for armored unit dynamic weapon-target assignment[J]. Systems Engineering and Electronics, 2015, 37 (2): 343- 347. | |
5 |
孔德鹏, 常天庆, 郝娜, 等. 基于对抗的突击武器与支援武器协同火力打击决策方法[J]. 兵工学报, 2019, 40 (3): 629- 640.
doi: 10.3969/j.issn.1000-1093.2019.03.023 |
KOND D P , CHANG T Q , HAO N , et al. Confrontation-based cooperative fire strike decision-making method of assault wea-pons and support weapons[J]. Acta Armamentarii, 2019, 40 (3): 629- 640.
doi: 10.3969/j.issn.1000-1093.2019.03.023 |
|
6 | 张先剑. 空陆攻防博弈的动态武器目标分配[J]. 国防科技大学学报, 2019, 41 (2): 185- 190. |
ZHANG X J . Land defense weapon versus target assignment against air attack[J]. Journal of National University of Defense Technology, 2019, 41 (2): 185- 190. | |
7 | LEBOUCHER C, SHIN H S, LE MENEC S, et al. Novel evolutionary game based multi-objective optimisation for dynamic weapon target assignment[C]//Proc. of the 19th International Federation of Automatic Control World Congress, 2014: 3936-3941. |
8 |
YAO Z X , LI M , CHEN Z J , et al. Mission decision-making method of multi-aircraft cooperatively attacking multi-target based on game theoretic framework[J]. Chinese Journal of Aeronautics, 2016, 29 (6): 1685- 1694.
doi: 10.1016/j.cja.2016.09.006 |
9 | LLOYD S P, WITSENHAUSEN H S. Weapons allocation is NP-complete[C]//Proc. of the IEEE Summer Simulation Confe-rence, 1986: 1054-1058. |
10 |
LEE M Z . Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40 (1): 198- 204.
doi: 10.1109/TSMCA.2009.2030163 |
11 |
WANG Y , JIN L , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179.
doi: 10.1109/CC.2017.7839767 |
12 |
CAO M , FANG W G . Swarm intelligence algorithms for wea-pon-target assignment in a multilayer defense scenario: a comparative study[J]. Symmetry, 2020, 12 (5): 824.
doi: 10.3390/sym12050824 |
13 |
FU G Y , WANG C , ZHANG D Q , et al. A multi objective particle swarm optimization algorithm based on multi population co-evolution for weapon-target assignment[J]. Mathematical Problems in Engineering, 2019,
doi: 10.1155/2019/1424590 |
14 |
MISHRA B , KIM E , BANG G C , et al. Weapon target assignment problem: multi-objective formulation, optimisation using MOPSO and TOPSIS[J]. International Journal of Intelligent Defence Support Systems, 2015, 5 (3): 226- 252.
doi: 10.1504/IJIDSS.2015.075483 |
15 |
LI Y , KOU Y X , LI Z W , et al. A modified pareto ant colony optimization approach to solve biobjective weapon-target assignment problem[J]. International Journal of Aerospace Engineering, 2017,
doi: 10.1155/2017/1746124 |
16 |
DE REZENDE M , DE LIMA B S L P , GUIMARAES S . A greedy ant colony system for defensive resource assignment problems[J]. Applied Artificial Intelligence, 2018, 32 (2): 138- 152.
doi: 10.1080/08839514.2018.1451137 |
17 | 张春美, 陈杰, 辛斌. 武器目标分配问题的离散差分进化算法[J]. 北京理工大学学报, 2014, 34 (3): 289- 293. |
ZHANG C M , CHEN J , XIN B . A discrete differential evolution algorithm for the weapon target assignment problem[J]. Transactions of Beijing Institute of Technology, 2014, 34 (3): 289- 293. | |
18 |
LI X Y , ZHOU D Y , PAN Q , et al. Weapon-target assignment problem by multiobjective evolutionary algorithm based on decomposition[J]. Complexity, 2018,
doi: 10.1155/2018.8623051 |
19 |
LEBOUCHER C , SHIN H S , MÉNEC S , et al. Novel evolutionary game based multi-objective optimisation for dynamic weapon target assignment[J]. IFAC Proceedings Volumes, 2014, 47 (3): 3936- 3941.
doi: 10.3182/20140824-6-ZA-1003.02150 |
20 | 吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43 (4): 1012- 1021. |
WU W H , GUO X F , ZHOU S Y , et al. Improved differential evolution algorithm for solving weapon-target assignment problem[J]. Systems Engineering and Electronics, 2021, 43 (4): 1012- 1021. | |
21 |
KARABOGA D , BASTURK B . A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39 (3): 459- 471.
doi: 10.1007/s10898-007-9149-x |
22 | 常天庆, 陈军伟, 张雷, 等. 坦克分队WTA问题的改进人工蜂群算法[J]. 装甲兵工程学院学报, 2015, 29 (5): 69- 76. |
CHANG T Q , CHEN J W , ZHANG L , et al. An improved artificial bee colony algorithm for tank unit WTA problem[J]. Journal of Academy of Armored Force Engineering, 2015, 29 (5): 69- 76. | |
23 |
CHANG T Q , KONG D P , HAO N , et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70, 845- 863.
doi: 10.1016/j.asoc.2018.06.014 |
24 | KARABOGA D , GORKEMLI B . A quick artificial bee colony(qABC) algorithm and its performance on optimization problems[J]. Applied Soft Computing, 2014, 23 (5): 227- 238. |
25 | LI G H , CUI L Z , FU X H , et al. Artificial bee colony algorithm with gene recombination for numerical function optimization[J]. Applied Soft Computing, 2017, 52 (3): 146- 159. |
26 | 孔德鹏, 常天庆, 戴文君, 等. 基于排序选择和精英引导的改进人工蜂群算法[J]. 控制与决策, 2019, 34 (4): 781- 786. |
KONG D P , CHANG T Q , DAI W J , et al. An improved artificial bee colony algorithm based on the ranking selection and the elite guidance[J]. Control and Decision, 2019, 34 (4): 781- 786. | |
27 |
LIU Q Z , ZHU M M , LI G H . A novel artificial bee colony algorithm with local and global information interaction[J]. Applied Soft Computing, 2018, 62, 702- 735.
doi: 10.1016/j.asoc.2017.11.012 |
28 |
LI X Y , ZHOU D Y , YANG Z , et al. A novel genetic algorithm for the synthetical sensor-weapon-target assignment problem[J]. Applied Sciences, 2019, 9 (18): 3803.
doi: 10.3390/app9183803 |
29 | 徐兰, 苏翔. 求解双层规划优化问题的层次风驱动优化算法[J]. 控制与决策, 2016, 31 (10): 1894- 1898. |
XU L , SU X . Hierarchical wind driven optimization method for solving bi-level programming problem[J]. Control and Decision, 2016, 31 (10): 1894- 1898. |
[1] | 来磊, 吴德伟, 邹鲲, 韩昆, 李海林. 基于多准则交互膜进化算法的UAV三维航迹规划[J]. 系统工程与电子技术, 2021, 43(1): 138-146. |
[2] | 刘庆国, 刘新学, 武健, 李亚雄, 陈豪. 基于改进NSGA-Ⅲ的多SGSW火力分配优化[J]. 系统工程与电子技术, 2020, 42(9): 1995-2002. |
[3] | 庞育才, 刘松. 基于改进人工蜂群算法的MIMO雷达稀疏阵列优化[J]. 系统工程与电子技术, 2018, 40(5): 1026-1030. |
[4] | 徐浩, 邢清华, 王伟. 基于模糊多目标规划的防空反导火力分配[J]. 系统工程与电子技术, 2018, 40(3): 563-570. |
[5] | 钟赟, 姚佩阳, 孙昱, 杨娟. 有人/无人机任务联盟分阶段形成方法[J]. 系统工程与电子技术, 2017, 39(9): 2031-2038. |
[6] | 常天庆, 王全东, 郝娜, 孙皓泽, 孔德鹏. 基于信息融合的目标管理与被动定位方法[J]. 系统工程与电子技术, 2017, 39(9): 1921-1935. |
[7] | 汪民乐, 范阳涛. 基于效果的常规导弹火力分配模型智能求解算法[J]. 系统工程与电子技术, 2017, 39(11): 2509-2514. |
[8] | 贺小亮,毕义明. 基于模拟退火遗传算法的编队对地攻击火力分配建模与优化[J]. 系统工程与电子技术, 2014, 36(5): 900-904. |
[9] | 张滢, 杨任农, 左家亮, 景小宁. 基于分解进化多目标优化算法的火力分配问题[J]. 系统工程与电子技术, 2014, 36(12): 2435-2441. |
[10] | 王慧颖,王文彬. 基于改进搜索策略的混合蜂群算法[J]. 系统工程与电子技术, 2014, 36(10): 2094-2101. |
[11] | 曹建军, 王艳霞, 邵衍振,高科. 高炮与防空导弹射击时机互补性研究[J]. 系统工程与电子技术, 2014, 36(1): 95-98. |
[12] | 余晓晗,徐泽水,刘守生,白承森. 复合打击下的火力分配方案评估[J]. 系统工程与电子技术, 2014, 36(1): 84-89. |
[13] | 刘晓, 刘忠, 侯文姝, 许江湖. 火力分配多目标规划模型的改进MOPSO算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 326-330. |
[14] | 费爱国, 张陆游, 丁前军 . 基于拍卖算法的多机协同火力分配[J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1829-1833. |
[15] | 张毅, 姜青山, 陈国生. 具有条件风险值的动态火力分配方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 313-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||