系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 498-505.doi: 10.12305/j.issn.1001-506X.2022.02.18

• 传感器与信号处理 • 上一篇    下一篇

角闪烁噪声下的集中式MIMO雷达自适应资源分配算法

李正杰*, 谢军伟, 张浩为, 邵雷, 陈文钰   

  1. 空军工程大学防空反导学院, 陕西 西安 710051
  • 收稿日期:2020-06-13 出版日期:2022-02-18 发布日期:2022-02-24
  • 通讯作者: 李正杰
  • 作者简介:李正杰(1995—), 男, 博士研究生, 主要研究方向为MIMO雷达资源管理、雷达电子战|谢军伟(1970—), 男, 教授, 博士研究生导师, 主要研究方向为隐身与反隐身、雷达电子战|张浩为(1992—), 男, 讲师, 主要研究方向为MIMO雷达资源管理|邵雷(1982—), 男, 副教授, 硕士研究生导师, 主要研究方向为武器系统总体技术|陈文钰(1996—), 男, 博士研究生, 主要研究方向为武器系统总体技术
  • 基金资助:
    国家自然科学基金(62001506)

Adaptive resource allocation algorithm in collocated MIMO radar under angular glint noise

Zhengjie LI*, Junwei XIE, Haowei ZHANG, Lei SHAO, Wenyu CHEN   

  1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
  • Received:2020-06-13 Online:2022-02-18 Published:2022-02-24
  • Contact: Zhengjie LI

摘要:

为解决角闪烁噪声下集中式多输入多输出(multi-input and multi-output, MIMO)雷达的资源优化分配问题, 设计了一种面向多目标跟踪任务的自适应资源分配算法。首先采用平方根容积粒子滤波(square-root cubature particle filter, SCPF)算法对各目标状态进行估计, 并根据其估计值来计算条件后验克拉美罗下界, 从而建立起角闪烁噪声下的跟踪误差评价准则。再依据功率和带宽与条件后验克拉美罗下界(predicted conditional Cramer Rao lower bound, PC-CRLB)间的函数关系, 建立起非凸优化模型。随后运用凸松弛技术和循环最小化算法将非凸优化问题转换为一系列凸优化问题, 运用半正定规划(semi-definite programming, SDP)算法结合Frank-Wolfe可行方向法进行求解, 从而实现资源自适应分配。最后通过仿真验证了不同场景下所提算法的有效性。

关键词: 集中式多输入多输出雷达, 角闪烁噪声, 条件后验克拉美罗下界, 资源优化

Abstract:

To solve the resource allocation problem in collocated multi-input and multi-output (MIMO) radar under angular glint noise, an adaptive resource allocation algorithm for multi-target tracking tasks is designed. Firstly, the square-root cubature particle filter (SCPF) algorithm is adopted to estimate the state of each target, and then the predicted conditional Cramer Rao lower bound (PC-CRLB) is calculated based on its estimate value, thus the evaluation criterion of tracking error under angular glint noise is established. Then a non-convex optimization model is established based on the function relationship of power and bandwidth with PC-CRLB. In addition, the non-convex optimization is transformed into a variety of convex optimization problems by using convex relaxation technique and cyclic minimization algorithm, and the semi-definite programming (SDP) algorithm combined with the Frank-Wolfe feasible direction method is used to solve the problems, so as to realize the adaptive allocation of resources. Finally, the effectiveness of the proposed algorithm is verified by simulations under different scenarios.

Key words: collocated multi-input and multi-output (MIMO) radar, angular glint noise, predicted conditional Cramer Rao lower bound (PC-CRLB), resource optimization

中图分类号: