1 |
张璘, 姜义成. 基于速度合成孔径雷达的海面舰船动目标成像方法[J]. 系统工程与电子技术, 2020, 42 (1): 45- 51.
|
|
ZHANG L , JIANG Y C . Imaging of moving surface ships based on velocity synthetic aperture radar[J]. Systems Engineering and Electronics, 2020, 42 (1): 45- 51.
|
2 |
LIU A F , WANG F , XU H , et al. N-SAR: a new multichannel multimode polarimetric airborne SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (9): 3155- 3166.
doi: 10.1109/JSTARS.2018.2848945
|
3 |
ZHANG Y , XIONG W , DONG X C , et al. A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne-airborne bistatic multichannel SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (8): 5976- 5991.
doi: 10.1109/TGRS.2020.2974531
|
4 |
CHEN L P , AN D X , HUANG X T . Extended autofocus backprojection algorithm for low-frequency SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (8): 1323- 1327.
doi: 10.1109/LGRS.2017.2711005
|
5 |
KANG M S , KIM K T . Ground moving target imaging based on compressive sensing framework with single-channel SAR[J]. IEEE Sensors Journal, 2020, 20 (3): 1238- 1250.
doi: 10.1109/JSEN.2019.2947114
|
6 |
PENG X M , TAN W X , HONG W , et al. Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (1): 213- 226.
doi: 10.1109/TGRS.2015.2453202
|
7 |
蒋留兵, 黄韬, 沈翰宁, 等. 基于局部随机化哈达玛矩阵的正交多匹配追踪算法[J]. 系统工程与电子技术, 2013, 35 (5): 914- 919.
doi: 10.3969/j.issn.1001-506X.2013.05.03
|
|
JIANG L B , HUANG T , SHEN H N , et al. Orthogonal multi-matching pursuit algorithm based on local randomized Hadamard matrix[J]. Systems Engineering and Electronics, 2013, 35 (5): 914- 919.
doi: 10.3969/j.issn.1001-506X.2013.05.03
|
8 |
杨磊, 岳云泽, 李埔丞, 等. 多地面运动目标大动态SAR成像稀疏表示[J]. 西安电子科技大学学报, 2019, 46 (5): 31- 40.
|
|
YANG L , YUE Y Z , LI P C , et al. Sparse representation of multi-ground moving targets in large dynamic SAR imaging[J]. Journal of Xidian University, 2019, 46 (5): 31- 40.
|
9 |
赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39 (5): 1019- 1023.
|
|
ZHAO K X , BI H , ZHANG B C . SAR tomography method based on fast iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39 (5): 1019- 1023.
|
10 |
STEPHEN B , NEAL P , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3 (1): 1- 122.
|
11 |
杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41 (12): 2826- 2835.
doi: 10.11999/JEIT190173
|
|
YANG L , LI P C , LI H J , et al. Robust and efficient general SAR image sparse feature enhancement algorithm[J]. Journal of Electronics and Information Technology, 2019, 41 (12): 2826- 2835.
doi: 10.11999/JEIT190173
|
12 |
YUAN M , LIN Y . Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Series B, 2006, 68, 49- 67.
doi: 10.1111/j.1467-9868.2005.00532.x
|
13 |
杨磊, 李慧娟, 黄博, 等. 双层稀疏组LASSO高分辨SAR结构特征增强成像[J]. 系统工程与电子技术, 2021, 43 (2): 351- 362.
|
|
YANG L , LI H J , HUANG B , et al. High resolution SAR imagery with structural feature enhancement under two-layer sparse group LASSO[J]. Systems Engineering and Electronics, 2021, 43 (2): 351- 362.
|
14 |
TANG C M , LIU X L , LI Y J , et al. Morphology operators construction by adaptive elliptical structuring elements based on nonlinear structure tensor[J]. Journal of Physics: Conference Series, 2017, 787 (1): 012021.
|
15 |
HARALICK R M , STERNBERG S R , ZHUANG X . Image analysis using mathematical morphology[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1987, 9 (4): 532- 550.
|
16 |
CHEN M , LIU D Y , QIAN K J , et al. Lunar crater detection based on terrain analysis and mathematical morphology methods using digital elevation models[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (7): 3681- 3692.
doi: 10.1109/TGRS.2018.2806371
|
17 |
LIU L Y , JIA Z H , YANG J , et al. SAR image change detection based on mathematical morphology and the K-means clustering algorithm[J]. IEEE Access, 2019, 7, 43970- 43978.
doi: 10.1109/ACCESS.2019.2908282
|
18 |
SGHAIER M O , FOUCHER S , LEPAGE R . River extraction from high-resolution SAR images combining a structural feature set and mathematical morphology[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (3): 1025- 1038.
doi: 10.1109/JSTARS.2016.2609804
|
19 |
ZARANDY A , STOFFELS A , ROSKA T , et al. Implementation of binary and gray-scale mathematical morphology on the CNN universal machine[J]. IEEE Trans.on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 1998, 45 (2): 163- 168.
doi: 10.1109/81.661683
|
20 |
ZHANG A Q , JI T Y , LI M S , et al. An identification method based on mathematical morphology for sympathetic inrush[J]. IEEE Trans.on Power Delivery, 2018, 33 (1): 12- 21.
doi: 10.1109/TPWRD.2016.2590479
|
21 |
ZHAO H M , LIU H D , XU J J , et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (7): 4165- 4172.
doi: 10.1109/TIM.2019.2948414
|
22 |
ZHANG W B, WANG H J, TENG R J, et al. Application of adaptive structure element for generalized morphological filtering in vibratio signal de-noising[C]//Proc. of the 3rd International Congress on Image and Signal Processing, 2010: 3313-3317.
|
23 |
葛世国. 基于数学形态学的遥感图像分割算法研究[D]. 成都: 成都理工大学, 2014.
|
|
GE S G. Research on remote sensing image segmentation algorithm based on mathematical morphology[D]. Chengdu: Chengdu University of Technology, 2014.
|
24 |
LU Z, WANG F L, CHANG Y Q, et al. Edge detection based on adaptive structure element morphology[C]//Proc. of the IEEE International Conference on Automation and Logistics, 2007: 254-257.
|
25 |
LI S, ZHOU G Q, ZHENG Z Z, et al. The relation between accuracy and size of structure element for vehicle detection with high resolution highway aerial images[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 2645-2648.
|
26 |
YANG L , XING M D , WANG Y , et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10 (1): 165- 169.
doi: 10.1109/LGRS.2012.2196676
|
27 |
YANG L , ZHAO L F , BI G A , et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (4): 2254- 2267.
doi: 10.1109/TGRS.2015.2498158
|
28 |
李清泉, 王欢. 基于稀疏表示理论的优化算法综述[J]. 测绘地理信息, 2019, 44 (4): 1- 9.
|
|
LI Q Q , WANG H . A review of optimization algorithms based on sparse representation theory[J]. Journal of Geomatics, 2019, 44 (4): 1- 9.
|
29 |
DONOHO D L , ARIAN M , ANDREA M . The noise-sensitivity phase transition in compressed sensing[J]. IEEE Trans.on Information Theory, 2011, 57 (10): 6920- 6941.
doi: 10.1109/TIT.2011.2165823
|
30 |
CHAN T H , JIA K , GAO S , et al. PCANet: a simple deep learning baseline for image classification[J]. IEEE Trans.on Image Processing, 2015, 24 (12): 5017- 5032.
doi: 10.1109/TIP.2015.2475625
|