1 |
WANG S Q , BAI J , HUANG X Y , et al. Analysis of radar emitter signal sorting and recognition model structure[J]. Procedia Computer Science, 2019, 154, 500- 503.
doi: 10.1016/j.procs.2019.06.076
|
2 |
黄颖坤, 金炜东, 葛鹏, 等. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41 (5): 1084- 1091.
|
|
HUANG Y K , JIN W D , GE P , et al. Radar emitter signal recognition based on multi-scale information entropy[J]. Journal of Electronics and Information, 2019, 41 (5): 1084- 1091.
|
3 |
谭龙, 潘继飞, 杨丽, 等. 基于脉冲角度特征的雷达辐射源识别及仿真实现[J]. 舰船电子工程, 2016, 36 (8): 97- 102.
|
|
TAN L , PAN J F , YANG L , et al. Radar emitter recognition and simulation based on pulse angle feature[J]. Ship Electronic Engineering, 2016, 36 (8): 97- 102.
|
4 |
MA J , HUANG G , ZUO W F , et al. Robust radar waveform recognition algorithm based on random projections and sparse classification[J]. IET Radar, Sonar & Navigation, 2014, 8 (40): 290- 296.
|
5 |
WANG Y H , ZHANG S C , ZHANG Y W , et al. A cooperative spectrum sensing method based on empirical mode decomposition and information geometry in complex electromagnetic environment[J]. Complexity, 2019, 28 (5): 1709- 1921.
|
6 |
孟凡杰, 唐宏, 王义哲, 等. 基于时频图像纹理特征的雷达辐射源信号识别[J]. 弹箭与制导学报, 2017, 37 (3): 152- 156.
|
|
MENG F J , TANG H , WANG Y Z , et al. Radar radiation source signal recognition based on texture characteristics of time-frequency images[J]. Journal of Missile and Guidance, 2017, 37 (3): 152- 156.
|
7 |
曹晓航, 汪立新, 束学渊. 基于小波不变矩的雷达辐射源信号识别[J]. 计算机工程与应用, 2020, 56 (19): 269- 272.
|
|
CAO X H , WANG L X , SHU X Y . Radar emitter signal recognition based on wavelet moment invariants[J]. Computer Engineering and applications, 2020, 56 (19): 269- 272.
|
8 |
ZHANG Z , GEIGER J , POHJALAINEN J , et al. Deep learning for environmentally robust speech recognition: an overview of recent developments[J]. ACM Trans.on Intelligent Systems and Technology, 2018, 9 (5): 921- 928.
|
9 |
LI J H, ZHAO R L, HU H, et al. Improving RNN transducer modeling for end-to-end speech recognition[C]//Proc. of the IEEE Automatic Speech Recognition and Understanding Work-shop, 2019: 114-121.
|
10 |
ELBIR A M , MISHRA K V , ELDAR Y C . Cognitive radar antenna selection via deep learning[J]. IET Radar, Sonar & Navigation, 2019, 13 (6): 871- 880.
|
11 |
LI X Y , HE Y , JING X J . A survey of deep learning-based human activity recognition in radar[J]. Remote Sensing, 2019, 11 (9): 1068.
doi: 10.3390/rs11091068
|
12 |
HE K S, ZHANG X, REN S, et al. Deep learning for image recognition[C]//Proc. of the Computer Pattern Recognition, 2016: 770-778.
|
13 |
LI Y , PENG C D , CHEN Y P , et al. A deep learning method for change detection in synthetic aperture radar images[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (8): 5751- 5763.
doi: 10.1109/TGRS.2019.2901945
|
14 |
GURBUZ S Z , AMIN M G . Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring[J]. IEEE Signal Processing Magazine, 2019, 36 (4): 16- 28.
doi: 10.1109/MSP.2018.2890128
|
15 |
CUI K W , HU C , WANG R S , et al. Deep-learning-based extraction of the animal migration patterns from weather radar images[J]. Science China Information Sciences, 2020, 63 (4): 3817- 3829.
|
16 |
ZHANG M , LIU L T , DIAO M . LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16, 1682- 1684.
doi: 10.3390/s16101682
|
17 |
LI Y B , GE J , LIN Y , et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21 (11): 4254- 4260.
doi: 10.1007/s11771-014-2422-5
|
18 |
KONG S H , KIM M , HOANG L M . Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942
|
19 |
WAN J , YU X , GUO Q . LPI radar wavefor m recognition based on CNN and TPOT[J]. Symmetry, 2019, 11 (5): 725- 731.
doi: 10.3390/sym11050725
|
20 |
CAIN L, CLARK J, PAULS E, et al. Convolutional neural networks for radar emitter classification[C]//Proc. of the IEEE 8th Annual Computing and Communication Workshop and Conference, 2018: 79-83.
|
21 |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence mo-deling[R]. Pittsburgh: Carnegie Mellon University, 2018: 7-9.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Proc. of the 14th European Conference on Computer Vision, 2016: 630-645
|
23 |
OORD A, DIELEMAN S, ZEN H, et al. Wave net: a generative model for raw audi[EB/OL]. [2019-06-20]. https://arxiv.org/abs/1609.03499v1.
|
24 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2019-06-20]. https://arxiv.org/abs/1511.07122.
|
25 |
NAIR V, HINTON G E. Rectified linear units improve restric-ted Boltzmann machines[C]//Proc. of the 27th IEEE International Conference on Machine Learning, 2010: 807-814.
|
26 |
MAAS A L , HANNUN A Y , NG A Y . Rectifier nonlinearities improve neural network acoustic models[J]. Machine Learning, 2013, 30 (1): 3- 8.
|
27 |
CHEN L, ZHANG H W, XIAO J, et al. SCACNN: spatial and channel-wise attention in convolutional networks for image captioning[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6298-6306.
|
28 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc. of the International Conference on Machine Learning, 2015: 448-456.
|
29 |
ZHANG Y D , GOVINDARAJ V V , TANG C , et al. High performance multiple sclerosis classification by data augmentation and AlexNet transfer learning model[J]. Journal of Medical Imaging and Health Informatics, 2019, 9 (9): 2012- 2021.
doi: 10.1166/jmihi.2019.2692
|
30 |
WEN L, LI X, LI X Y, et al. A new transfer learning based on VGG-19 network for fault diagnosis[C]//Proc. of the IEEE 23rd International Conference on Computer Supported Cooperative Work in Design, 2019: 205-209.
|
31 |
AYYACHAMY S, ALEX V, KHENED M, et al. Medical image retrieval using Resnet-18[C]//Proc. of the Medical Imaging: Imaging Informatics for Healthcare, Research, and Applications, 2019: 1095410.
|