1 |
王法胜, 鲁明羽, 赵清杰, 等. 粒子滤波算法[J]. 计算机学报, 2014, 37 (8): 1679- 1694.
|
|
WANG F S , LU M Y , ZHAO Q J , et al. Particle filtering algorithm[J]. Chinese Journal of Computers, 2014, 37 (8): 1679- 1694.
|
2 |
COLLINS R T. Mean-shift blob tracking through scale space[C]// Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. DOI: 10.1109/CVPR.2003.1211475.
|
3 |
WELCH G, BISHOP G. An introduction to the Kalman filter[C]// Proc. of the ACM Special Interest Group on Computer Graphics and Interactive Techniques, 2001.
|
4 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550.
|
5 |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Proc. of the European Conference on Computer Vision, 2012: 702-715.
|
6 |
HENRIQUES J F , CASEIRO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2014, 37 (3): 583- 596.
|
7 |
杜若鹏, 张磊, 卢杨. 上下文感知相关滤波的红外目标跟踪改进算法[J]. 激光与红外, 2020, 50 (7): 839- 845.
|
|
DU R P , ZHANG L , LU Y . Improved infrared target tracking algorithm based on context-aware correlation filter[J]. Laser & Infrared, 2020, 50 (7): 839- 845.
|
8 |
DANELLJAN M, ROBINSON A, SHAHBAZ K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 472-488.
|
9 |
王承赟, 张龙杰, 李相民, 等. 基于改进的核相关滤波算法的红外目标跟踪[J]. 电光与控制, 2021, 28 (7): 9- 13.
|
|
WANG C Y , ZHANG L J , LI X M , et al. Infrared target tracking based on improved kernel correlation filter algorithm[J]. Electronics Optics & Control, 2021, 28 (7): 9- 13.
|
10 |
宋国鹏. 基于孪生网络的单目标跟踪算法研究及其应用[D]. 北京: 北京交通大学, 2020.
|
|
SONG G P. Research and application of single target tracking algorithm based on siamese network[D]. Beijing: Beijing Jiaotong University, 2020.
|
11 |
柳赟, 孙淑艳. 基于自适应模板更新的改进孪生卷积网络目标跟踪算法[J]. 计算机应用与软件, 2021, 38 (4): 145- 151, 230.
doi: 10.3969/j.issn.1000-386x.2021.04.024
|
|
LIU Y , SUN S Y . Object tracking algorithm based on improved siamese convolutional networks combined with adaptive template updating[J]. Computer Applications and Software, 2021, 38 (4): 145- 151, 230.
doi: 10.3969/j.issn.1000-386x.2021.04.024
|
12 |
DANELLJAN M, BHAT G, SHAHBAZ K F, et al. Eco: efficient convolution operators for tracking[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646.
|
13 |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proc. of the European Conference on Computer Vision, 2016: 850-865.
|
14 |
LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8971-8980.
|
15 |
ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proc. of the European Conference on Computer Vision, 2018: 101-117.
|
16 |
LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4282-4291.
|
17 |
BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proc. of the IEEE International Conference on Image Processing, 2016: 3464-3468.
|
18 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proc. of the IEEE International Conference on Image Processing, 2017: 3645-3649.
|
19 |
WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[C]// Proc. of the European Conference on Computer Vision, 2020: 107-122.
|
20 |
ZHANG Y F , WANG C Y , WANG X G , et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. arXiv preprint, 2020,
|
21 |
ZHOU X , WANG D . KRÄHENBVHL P. Objects as points[J]. arXiv preprint, 2019, arXiv, 1904.07850.
|
22 |
李震霄, 孙伟, 刘明明, 等. 交通监控场景中的车辆检测与跟踪算法研究[J]. 计算机工程与应用, 2021, 57 (8): 103- 111.
|
|
LI Z X , SUN W , LIU M M , et al. Research on vehicle detection and tracking algorithms in traffic monitoring scenes[J]. Computer Engineering and Applications, 2021, 57 (8): 103- 111.
|
23 |
赵朵朵, 章坚武, 傅剑峰. 基于深度学习的实时人流统计方法研究[J]. 传感技术学报, 2020, 33 (8): 1161- 1168.
doi: 10.3969/j.issn.1004-1699.2020.08.013
|
|
ZHAO D D , ZHANG J W , FU J F . Research on real-time statistics of people flow based on deep learning[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (8): 1161- 1168.
doi: 10.3969/j.issn.1004-1699.2020.08.013
|
24 |
张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52 (4): 248- 256.
|
|
ZHANG H M , WANG R , DONG P J , et al. Beef cattle multi-target tracking based on DeepSORT algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (4): 248- 256.
|
25 |
MILAN A , LEAL-TAIXÉ L , REID I , et al. MOT16: a benchmark for multi-object tracking[J]. arXiv preprint, 2016, arXiv, 1603.00831.
|
26 |
DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
|
27 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
28 |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint, 2014, arXiv, 1409.1556.
|
29 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
30 |
LUO H, GU Y, LIAO X, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
|
31 |
KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7482-7491.
|