系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 385-393.doi: 10.12305/j.issn.1001-506X.2022.02.04
张玺, 金正猛, 姜亚琴*
收稿日期:
2021-03-02
出版日期:
2022-02-18
发布日期:
2022-02-24
通讯作者:
姜亚琴
作者简介:
张玺(1997—), 男, 硕士研究生, 主要研究方向为基于偏微分方程的图像处理|金正猛(1982—), 男, 教授, 博士, 主要研究方向为非线性偏微分方程及其在图像处理中的应用|姜亚琴(1976—), 女, 副教授, 博士, 主要研究方向为偏微分方程数值解
基金资助:
Xi ZHANG, Zhengmeng JIN, Yaqin JIANG*
Received:
2021-03-02
Online:
2022-02-18
Published:
2022-02-24
Contact:
Yaqin JIANG
摘要:
提出了融合深度图像先验的全变差(total variation, TV)图像着色模型, 在即插即用(plug-and-play, PnP)框架下, 结合交替方向乘子法(alternating direction method of multipliers, ADMM), 设计出相应的数值求解算法, 并给出该算法的收敛性结果。数值实验结果表明, 该模型能有效整合耦合TV边缘捕获和卷积神经网络(convolutional neural network, CNN)细节捕捉的功能, 对结构图像和纹理等细节丰富的图像, 均能实现较大范围的有效着色。
中图分类号:
张玺, 金正猛, 姜亚琴. 融合深度图像先验的全变差图像着色算法[J]. 系统工程与电子技术, 2022, 44(2): 385-393.
Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization[J]. Systems Engineering and Electronics, 2022, 44(2): 385-393.
表2
图 3中彩色图像的PSNR、MSE和QSSIM值"
图像 | 评价指标 | Larsson模型 | Iizuka模型 | Kang模型 | Jin模型 | Min模型 | 本文模型 |
图像1 | PSNR MSE QSSIM | 18.94 0.012 8 0.934 5 | 17.85 0.016 4 0.942 9 | 20.56 0.012 5 0.909 2 | 25.42 0.002 9 0.944 0 | 24.01 0.004 0 0.941 0 | 25.52 0.002 8 0.944 2 |
图像2 | PSNR MSE QSSIM | 14.33 0.014 9 0.957 0 | 15.15 0.012 3 0.965 5 | 26.90 0.000 8 0.974 4 | 24.34 0.001 5 0.954 2 | 24.59 0.001 4 0.938 5 | 25.40 0.001 2 0.961 9 |
图像3 | PSNR MSE QSSIM | 14.59 0.034 7 0.913 1 | 13.89 0.040 8 0.918 4 | 21.23 0.007 5 0.882 7 | 24.86 0.003 3 0.925 5 | 24.77 0.003 3 0.921 1 | 24.64 0.003 4 0.922 6 |
图像4 | PSNR MSE QSSIM | 13.36 0.046 1 0.886 2 | 12.67 0.054 0 0.892 3 | 18.44 0.014 3 0.858 0 | 22.17 0.006 1 0.857 5 | 21.78 0.006 6 0.851 8 | 22.49 0.005 6 0.857 7 |
表4
图 6中彩色图像的PSNR、MSE和QSSIM值"
图像 | 评价指标 | Lrasson模型 | Iizuka模型 | Kang模型 | Jin模型 | Min模型 | 本文模型 |
PSNR | 24.59 | 25.49 | 19.03 | 28.37 | 28.42 | 29.63 | |
图像5 | MSE QSSIM | 0.003 5 0.988 9 | 0.002 8 0.989 1 | 0.012 5 0.962 4 | 0.001 5 0.983 1 | 0.001 4 0.983 0 | 0.001 1 0.983 9 |
图像6 | PSNR MSE QSSIM | 24.82 0.003 3 0.985 8 | 23.27 0.004 7 0.988 0 | 24.68 0.003 4 0.986 4 | 28.44 0.001 4 0.972 6 | 29.07 0.001 2 0.938 2 | 29.20 0.001 2 0.975 3 |
图像7 | PSNR MSE QSSIM | 15.08 0.029 3 0.957 1 | 24.21 0.003 6 0.980 7 | 23.21 0.004 5 0.977 9 | 26.94 0.001 9 0.972 6 | 28.86 0.001 2 0.968 4 | 29.44 0.001 1 0.975 3 |
图像8 | PSNR MSE QSSIM | 28.12 0.001 5 0.983 2 | 29.10 0.001 2 0.985 7 | 24.52 0.003 5 0.983 3 | 26.74 0.002 1 0.974 8 | 29.22 0.001 2 0.972 7 | 29.85 0.001 0 0.980 5 |
图像9 | PSNR MSE QSSIM | 19.83 0.010 4 0.951 6 | 24.82 0.003 3 0.948 2 | 27.75 0.001 7 0.958 5 | 27.55 0.001 8 0.952 6 | 27.41 0.001 8 0.953 6 | 29.52 0.001 1 0.960 6 |
图像10 | PSNR MSE QSSIM | 16.63 0.021 7 0.946 7 | 17.57 0.017 5 0.941 7 | 23.12 0.004 9 0.939 5 | 24.08 0.003 9 0.939 8 | 24.24 0.003 8 0.940 9 | 25.07 0.003 1 0.950 0 |
1 |
PAUL S , BHATTACHARYA S , GUPTA S . Spatiotemporal colorization of video using 3D steerable pyramids[J]. IEEE Trans.on Circuits and Systems for Video Technology, 2017, 27 (8): 1605- 1619.
doi: 10.1109/TCSVT.2016.2539539 |
2 |
汪冬宇, 汪磊. 基于MRI医学图像的脑肿瘤区域着色方法[J]. 养生保健指南, 2018, (5): 311.
doi: 10.3969/j.issn.1006-6845.2018.05.304 |
WANG D Y , WANG L . Brain tumor region coloring method based on MRI medical image[J]. Health Guide, 2018, (5): 311.
doi: 10.3969/j.issn.1006-6845.2018.05.304 |
|
3 | CHENG Z Z, YANG Q X, SHENG B. Deep colorization[C]// Proc. of the IEEE International Conference on Computer Vision, 2015: 415-423. |
4 | DESHPANDE A, ROCK J, FORSYTH D. Learning large-scale automatic image colorization[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 567-575. |
5 | LARSSON G, MAIRE M, SHAKHNAROVICH G. Learning representations for automatic colorization[C]//Proc. of the Computer Vision-ECCV Springer International Publishing, 2016: 577-593. |
6 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1137. |
7 | ⅡZUKA S , SIMO -SERRA E , ISHIKAWA H . Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification[J]. ACM Trans.on Graphics, 2016, 35 (4): 110. |
8 | ZHANG R , ZHU J Y , ISOLA P , et al. Real-time user-guided image colorization with learned deep priors[J]. ACM Trans.on Graphics, 2017, 36 (4): 119. |
9 | 徐中辉, 吕维帅. 基于卷积神经网络的图像着色[J]. 电子技术应用, 2018, 44 (10): 19- 22. |
XU Z H , LYU W S . Image coloring based on convolution neural network[J]. Application of Electronic Technique, 2018, 44 (10): 19- 22. | |
10 | SAPIRO G. Inpainting the colors[C]//Proc. of the IEEE International Conference on Image Processing, 2005: 698-701. |
11 |
YATZIV L , SAPIRO G . Fast image and video colorization using chrominance blending[J]. IEEE Trans.on Image Processing, 2006, 15 (5): 1120- 1129.
doi: 10.1109/TIP.2005.864231 |
12 |
滕升华, 谌安军, 邹谋炎. 一种基于拉普拉斯方程的图像彩色化方法[J]. 中国图象图形学报, 2006, 11 (4): 545- 548.
doi: 10.3969/j.issn.1006-8961.2006.04.017 |
TENG S H , CHEN A J , ZOU M Y . Colorization using laplace equation[J]. Journal of Image and Graphics, 2006, 11 (4): 545- 548.
doi: 10.3969/j.issn.1006-8961.2006.04.017 |
|
13 |
KANG S H , MARCH R . Variational models for image colorization via chromaticity and brightness decomposition[J]. IEEE Trans.on Image Processing, 2007, 16 (9): 2251- 2261.
doi: 10.1109/TIP.2007.903257 |
14 |
CASELLES V , FACCIOLO G , MEINHARDT E . Anisotropic Cheeger sets and applications[J]. SIAM Journal on Imaging Sciences, 2009, 2 (4): 1211- 1254.
doi: 10.1137/08073696X |
15 |
LI F , BAO Z , LIU R H , et al. Fast image inpainting and colorization by Chambolle's dual method[J]. Journal of Visual Communication and Image Representation, 2011, 22 (6): 529- 542.
doi: 10.1016/j.jvcir.2011.06.006 |
16 |
金正猛, 周晨. 基于耦合全变差的快速图像着色算法[J]. 电子学报, 2016, 44 (10): 2364- 2369.
doi: 10.3969/j.issn.0372-2112.2016.10.012 |
JIN Z M , ZHOU C . A fast coupled total variation algorithm for image colorization[J]. Acta Electronica Sinica, 2016, 44 (10): 2364- 2369.
doi: 10.3969/j.issn.0372-2112.2016.10.012 |
|
17 | JIN Z M , ZHOU C , NG M K . A coupled total variation model with curvature driven for image colorization[J]. Inverse Problems and Imaging, 2017, 10 (4): 1037- 1055. |
18 |
MIN L H , LI Z H , JIN Z M , et al. Color edge preserving image colorization with a coupled natural vectorial total variation[J]. Computer Vision and Image Understanding, 2020, 196, 102981.
doi: 10.1016/j.cviu.2020.102981 |
19 |
ZHAO X L , XU W H , JIANG T X , et al. Deep plug-and-play prior for low-rank tensor completion[J]. Neurocomputing, 2020, 400, 137- 149.
doi: 10.1016/j.neucom.2020.03.018 |
20 | SREEHARI S , VENKATAKRISHNAN S V , WOHLBERG B , et al. Plug-and-play priors for bright field electron tomography and sparse interpolation[J]. IEEE Trans.on Computational Imaging, 2016, 2 (4): 408- 423. |
21 | VENKATAKRISHNAN S V, BOUMAN C A, WOHLBERG B. Plug-and-play priors for model based reconstruction[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2013: 945-948. |
22 | CHAN S H , WANG X , ELGENDY O A . Plug-and-play ADMM for image restoration: fixed-point convergence and applications[J]. IEEE Trans.on Computer Imaging, 2006, 3 (1): 84- 98. |
23 |
KOJU R , JOSHI S R . Comparative analysis of color image watermarking technique in RGB, YUV, and YCbCr color channels[J]. Nepal Journal of Science and Technology, 2015, 15 (2): 133- 140.
doi: 10.3126/njst.v15i2.12130 |
24 | CHELALI F Z, CHERABIT N, DJERADI A. Face recognition system using skin detection in RGB and YCbCr color space[C]// Proc. of the World Symposium on Web Application & Networking, 2015. |
25 | SAPIRO G . Geometric partial differential equations and image analysis[M]. Cambridge: Cambridge University Press, 2006. |
26 |
ZHANG K , ZUO W M , ZHANG L . FFDNet: toward a fast and flexible solution for CNN based image denoising[J]. IEEE Trans.on Image Processing, 2018, 27 (9): 4608- 4622.
doi: 10.1109/TIP.2018.2839891 |
27 |
GABAY D , MERCIER B . A dual algorithm for the solution of nonlinear variational problems via finite-element approximations[J]. Computer and Mathematics with Applications, 1976, 2 (1): 17- 40.
doi: 10.1016/0898-1221(76)90003-1 |
28 |
BOYD S , PARIKH N , CHU E , et al. Distributed optimization and statistical learning via the alternating direction method of multip-liers[J]. Foundations and Trends in Machine Learning, 2010, 3 (1): 1- 122.
doi: 10.1561/2200000016 |
29 |
AMIR K , ORLY Y P . Quaternion structural similarity: a new quality index for color images[J]. IEEE Trans.on Image Processing, 2012, 21 (4): 1526- 1536.
doi: 10.1109/TIP.2011.2181522 |
30 | CHAN S H , WANG X , ELGENDY O A . Plug-and-play ADMM for image restoration: fixed-point convergence and applications[J]. IEEE Trans.on Computer Imaging, 2016, 3 (1): 84- 98. |
31 | RYU E, LIU J, WANG S, et al. Plug-and-play methods provably converge with properly trained denoisers[C]//Proc. of the 36th International Conference on Machine Learning, 2019: 5546-5557. |
[1] | 宋爽, 张悦, 张琳娜, 岑翼刚, 李浥东. 基于深度学习的轻量化目标检测算法[J]. 系统工程与电子技术, 2022, 44(9): 2716-2725. |
[2] | 王彩云, 吴钇达, 王佳宁, 马璐, 赵焕玥. 基于改进的CNN和数据增强的SAR目标识别[J]. 系统工程与电子技术, 2022, 44(8): 2483-2487. |
[3] | 韦娟, 杨皇卫, 宁方立. 基于NMF与CNN联合优化的声学场景分类[J]. 系统工程与电子技术, 2022, 44(5): 1433-1438. |
[4] | 陈冬, 句彦伟. 基于语义分割实现的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44(4): 1195-1201. |
[5] | 方伟, 王玉, 闫文君, 林冲. 基于神经网络的符号化飞行动作识别[J]. 系统工程与电子技术, 2022, 44(3): 737-745. |
[6] | 孙晶明, 虞盛康, 孙俊. 基于深度学习的HRRP识别姿态敏感性分析[J]. 系统工程与电子技术, 2022, 44(3): 802-807. |
[7] | 刘恒燕, 张立民, 闫文君, 钟兆根, 凌青, 梁晓军. 基于WBP-CNN算法的LDPC译码[J]. 系统工程与电子技术, 2022, 44(3): 1030-1035. |
[8] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
[9] | 金涛, 王晓峰, 田润澜, 张歆东. 基于改进1DCNN+TCN的雷达辐射源快速识别方法[J]. 系统工程与电子技术, 2022, 44(2): 463-469. |
[10] | 吕勤哲, 全英汇, 沙明辉, 董淑仙, 邢孟道. 基于集成深度学习的有源干扰智能分类[J]. 系统工程与电子技术, 2022, 44(12): 3595-3602. |
[11] | 高涌荇, 王旭东, 汪玲, 朱岱寅, 郭军, 孟凡旺. 基于RCNN的双极化气象雷达天气信号检测[J]. 系统工程与电子技术, 2022, 44(11): 3380-3387. |
[12] | 李永刚, 朱卫纲, 黄琼男, 李云涛, 何永华. 复杂背景下SAR图像近岸舰船目标检测[J]. 系统工程与电子技术, 2022, 44(10): 3096-3103. |
[13] | 但波, 付哲泉, 高山, 简涛. 基于卷积神经网络的海面目标全极化高分辨距离像识别技术[J]. 系统工程与电子技术, 2022, 44(1): 108-116. |
[14] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[15] | 王彩云, 李阳雨, 李晓飞, 王佳宁, 魏文怡. 基于稀疏性深度学习的航拍图像超分辨重构[J]. 系统工程与电子技术, 2021, 43(8): 2045-2050. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||