系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (2): 376-384.doi: 10.12305/j.issn.1001-506X.2022.02.03

• 电子技术 • 上一篇    下一篇

基于迁移学习和注意力机制的伪装图像分割

吴涛, 王伦文*, 朱敬成   

  1. 国防科技大学电子对抗学院, 安徽 合肥 230037
  • 收稿日期:2021-03-29 出版日期:2022-02-18 发布日期:2022-02-24
  • 通讯作者: 王伦文
  • 作者简介:吴涛(1995—), 男, 硕士研究生, 主要研究方向为计算机视觉、目标检测|王伦文(1966—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为认知无线电、智能信号处理|朱敬成(1997—), 男, 硕士研究生, 主要研究方向为网络拓扑结构分析

Camouflage image segmentation based on transfer learning and attention mechanism

Tao WU, Lunwen WANG*, Jingcheng ZHU   

  1. College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
  • Received:2021-03-29 Online:2022-02-18 Published:2022-02-24
  • Contact: Lunwen WANG

摘要:

不同于常规目标, 伪装目标特征模糊、尺度信息复杂多变、检测和分割难度更高。在现有伪装数据集基础上, 提出了一种结合迁移学习和有效通道注意力的UNet网络伪装图像分割方法。首先, 针对伪装目标特征模糊难以有效提取的问题, 在UNet的下采样和上采样过程中, 引入一种有效通道注意力机制, 在不增加网络参数的同时, 提高有效区域的特征权重; 并将在ImageNet预训练好的视觉几何组(visual geometry group, VGG)系列网络迁移到UNet网络中, 实现特征迁移和参数共享, 提高模型的泛化能力, 降低训练效果对数据集的依赖, 减少训练成本; 在训练过程中引入FocalLoss函数, 增加难挖掘样本权重, 提高对困难样本关注度; 最后通过解码网络得到分割结果。在CHAMELEON、CAMO和COD10K数据集上进行了测试, 相比原始算法, 性能指标有显著提升。

关键词: 伪装图像, 图像分割, 注意力机制, 迁移学习

Abstract:

Different from conventional targets, camouflage targets have fuzzy features and complex scale information, resulting in more difficult detection and segmentation. Based on the existing camouflage dataset, a UNet network camouflage image segmentation method combining transfer learning and effective channel attention is proposed. First of all, in view of the problem that the camouflage target feature is difficult to effectively extract, in the down-sampling and up-sampling process of UNet, an effective channel attention mechanism is introduced to increase the feature weight of the effective area without increasing the network parameters. Transfer the visual geometry group (VGG) series network pre-trained on ImageNet to the UNet network to realize feature transfer and parameter sharing, improve the generalization ability of the model, reduce the dependence of the training effect on the dataset, and reduce the training cost. The FocalLoss function is introduced in the training process to increase the weight of difficult samples and increase the attention to difficult samples. Finally get the segmentation through the decoding network result. Tested on the datasets of CHAMELEON, CAMO and COD10K, compared with the original algorithm, the performance indicators of the method proposed have been significantly improved.

Key words: camouflage image, image segmentation, attention mechanism, transfer learning

中图分类号: