1 |
ZENG Y , ZHANG R , LIM T J . Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54 (5): 36- 42.
doi: 10.1109/MCOM.2016.7470933
|
2 |
LI B , FEI Z S , ZHANG Y , et al. Secure UAV communication networks over 5G[J]. IEEE Wireless Communications, 2019, 26 (5): 114- 120.
doi: 10.1109/MWC.2019.1800458
|
3 |
WANG H M , ZHANG X , JIANG J C . UAV-involved wireless physical-layer secure communications: overview and research directions[J]. IEEE Wireless Communications, 2019, 26 (5): 32- 39.
doi: 10.1109/MWC.001.1900045
|
4 |
CHRYSIKOS T, DAGIUKLAS T, KOTSOPOULOS S, et al. Wireless information-theoretic security in MANETs[C]//Proc. of the IEEE International Conference on Communications Workshops, 2013.
|
5 |
LIU Y L , CHEN H H , WANG L M . Physical layer security for next generation wireless networks: theories, technologies, and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19 (1): 347- 376.
|
6 |
HAMAMREH J M , FURQAN H M , ARSLAN H . Classifications and applications of physical layer security techniques for confidentiality: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21 (2): 1773- 1828.
|
7 |
MUKHERJEE A , FAKOORIAN S A A , HUANG J , et al. Principles of physical layer security in multiuser wireless networks: a survey[J]. IEEE Communications Surveys & Tuto-rials, 2014, 16 (3): 1550- 1573.
|
8 |
ZHANG L , ZHAO H , HOU S , et al. A survey on 5G millimeter wave communications for UAV-assisted wireless networks[J]. IEEE Access, 2019, 7, 117460- 117504.
doi: 10.1109/ACCESS.2019.2929241
|
9 |
WYNER A D . The wire-tap channel[J]. Bell Labs Technical Journal, 1975, 54 (8): 1355- 1387.
doi: 10.1002/j.1538-7305.1975.tb02040.x
|
10 |
WU Q Q , ZENG Y , ZHANG R . Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Trans.on Wireless Communications, 2017, 17 (3): 2109- 2121.
|
11 |
MA R Q , YANG W W , ZHANG Y , et al. Secure mmWave communication using UAV-enabled relay and cooperative jammer[J]. IEEE Access, 2019, 7, 119729- 119741.
doi: 10.1109/ACCESS.2019.2933231
|
12 |
张倩倩. 无人机协同传输通信系统物理层安全技术研究[J]. 信息技术与网络安全, 2020, 39 (5): 33- 36.
|
|
ZHANG Q Q . Research on physical layer security technology in UAV cooperative transmission communication system[J]. Network and Information Security, 2020, 39 (5): 33- 36.
|
13 |
JI B F , SONG K , LI C G , et al. Energy harvest and information transmission design in Internet-of-Things wireless communication systems[J]. AEU-International Journal of Electronics and Communications, 2018, 87, 124- 127.
doi: 10.1016/j.aeue.2018.01.038
|
14 |
JI B F , LI Y Q , ZHOU B C , et al. Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting[J]. IEEE Access, 2016, 4, 38738- 38747.
|
15 |
ZENG Y , ZHANG R . Energy-efficient UAV communication with trajectory optimization[J]. IEEE Trans.on Wireless Communications, 2017, 16 (6): 3747- 3760.
doi: 10.1109/TWC.2017.2688328
|
16 |
YANG L , CHEN J C , HASAN M O , et al. Outage perfor-mance of UAV-assisted relaying systems with RF energy harvesting[J]. IEEE Communications Letters, 2018, 22 (12): 2471- 2474.
doi: 10.1109/LCOMM.2018.2876869
|
17 |
MAMAGHANI M T , HONG Y . On the performance of low-altitude UAV-enabled secure AF relaying with cooperative jamming and SWIPT[J]. IEEE Access, 2019, 7, 153060- 153073.
doi: 10.1109/ACCESS.2019.2948384
|
18 |
XU J, ZENG Y, ZHANG R. UAV-enabled wireless power transfer: trajectory design and energy optimization[C]//Proc. of the IEEE 23rd Asia-Pacific Conference on Communications, 2017.
|
19 |
WU Q Q , LIU L , ZHANG R . Fundamental tradeoffs in communication and trajectory design for UAV-enabled wireless network[J]. IEEE Wireless Communications, 2019, 26 (1): 26- 44.
|
20 |
RIIHONEN T, KORPI D, RANTULA O, et al. On the prospects of full-duplex military radios[C]//Proc. of the IEEE International Conference on Military Communications & Information Systems, 2017.
|
21 |
HUANG W , CHEN W , BAI B , et al. Wiretap channel with full-duplex proactive eavesdropper: a game theoretic approach[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (9): 7658- 7663.
|
22 |
JAYAKODY D N K, PERERA T D, NATHAN M C, et al. Self-energized full duplex UAV-assisted cooperative communication systems[C]//Proc. of the IEEE International Black Sea Conference on Communications and Networking, 2019.
|
23 |
LU H Q , DAI H B , SUN P , et al. Proactive eavesdropping in UAV-aided mobile relay systems[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 68 (2): 1993- 1997.
|
24 |
WU W , WANG Y J , MO J L , et al. Robust proactive eavesdropping in UAV-enabled wireless communication networking[J]. EURASIP Journal on Wireless Communications and Network-ing, 2019, 285.
|
25 |
LIU C X , LEE J , QUEK T Q S . Safeguarding UAV communications against full-duplex active eavesdropper[J]. IEEE Trans.on Wireless Communications, 2019, 18 (6): 2919- 2931.
doi: 10.1109/TWC.2019.2906177
|
26 |
RIIHONEN T , WERNER S , WICHMAN R . Mitigation of loopback self-interference in full-duplex MIMO relays[J]. IEEE Trans.on Signal Processing, 2011, 59 (12): 5983- 5993.
doi: 10.1109/TSP.2011.2164910
|
27 |
KORPI D , TAMMINEN J , TURUNEN M , et al. Full-duplex mobile device-pushing the limits[J]. IEEE Communications Magazine, 2016, 54 (9): 80- 87.
doi: 10.1109/MCOM.2016.7565192
|
28 |
DUARTE M , DICK C , SABHARWAL A . Experiment-driven characterization of full-duplex wireless systems[J]. IEEE Trans.on Wireless Communications, 2012, 11 (12): 4296- 4307.
doi: 10.1109/TWC.2012.102612.111278
|
29 |
MILTON A . Handbook of mathematical functions with formulas, graphs, and mathematical tables[J]. American Journal of Physics, 1988, 56 (10): 958.
|
30 |
ZHOU Y, YEOH P L, CHEN H, et al. Secrecy outage probability and jamming coverage of UAV-enabled friendly jammer[C]//Proc. of the 11th International Conference on Signal Processing and Communication Systems, 2017.
|