系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 270-278.doi: 10.12305/j.issn.1001-506X.2022.01.33
马威强, 高永琪*, 赵苗
收稿日期:
2021-01-13
出版日期:
2022-01-01
发布日期:
2022-01-19
通讯作者:
高永琪
作者简介:
马威强(1997—), 男, 硕士研究生, 主要研究方向为武器制导与控制技术|高永琪(1968—), 男, 副教授, 博士, 主要研究方向为武器导航、制导与控制技术|赵苗(1990—), 男, 博士研究生, 主要研究方向为武器制导与控制技术
基金资助:
Weiqiang MA, Yongqi GAO*, Miao ZHAO
Received:
2021-01-13
Online:
2022-01-01
Published:
2022-01-19
Contact:
Yongqi GAO
摘要:
针对头脑风暴优化(brain storm optimization, BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题, 采用追随全局最优策略以充分利用全局最优信息, 并用差分变异代替原来的高斯变异以自适应调节变异步长, 提出了基于全局最优和差分变异的BSO(global-best difference-mutation brain storm optimization, GDBSO)算法。通过6个标准测试函数极值寻优的Matlab仿真对比研究表明GDBSO具有优良性能, 较好地解决了原BSO搜索效率低的问题, 提高了算法的寻优精度和收敛速度。GDBSO结合自主式水下航行器(autonomous underwater vehicle, AUV)路径规划应用的仿真验证了算法的有效性和可行性。
中图分类号:
马威强, 高永琪, 赵苗. 基于全局最优和差分变异的头脑风暴优化算法[J]. 系统工程与电子技术, 2022, 44(1): 270-278.
Weiqiang MA, Yongqi GAO, Miao ZHAO. Global-best difference-mutation brain storm optimization algorithm[J]. Systems Engineering and Electronics, 2022, 44(1): 270-278.
表1
选取的标准测试函数"
类型 | 函数名称 | 表达式 | 搜索区域 |
多峰 | Ackley | [-32, 32] | |
Alpine | [-10, 10] | ||
Griewank | [-600, 600] | ||
Rastrigin | [-5.12, 5.12] | ||
单峰 | Sphere | [-100, 100] | |
Schwefel | [-30, 30] |
表2
GDBSO设置不同参数在3维度下寻优结果"
标准测试函数 | f1 | f2 | f3 | f4 | f5 | f6 | |
平均值 | pr=0 | 8.88E-16 | 2.11E-41 | 5.47E-03 | 0.00E+00 | 1.46E-88 | 2.22E-44 |
pr=0.001 | 8.88E-16 | 2.77E-43 | 6.11E-03 | 1.99E-02 | 4.47E-88 | 3.04E-44 | |
pr=0.005 | 8.88E-16 | 4.19E-39 | 4.88E-03 | 1.99E-02 | 4.23E-88 | 4.00E-43 | |
pr=0.01 | 8.88E-16 | 1.22E-41 | 6.66E-03 | 0.00E+00 | 2.39E-87 | 1.37E-43 | |
pr=0.05 | 8.88E-16 | 1.35E-38 | 4.98E-03 | 0.00E+00 | 5.21E-83 | 8.43E-42 | |
pr=0.1 | 8.88E-16 | 9.77E-38 | 5.92E-03 | 0.00E+00 | 2.33E-78 | 1.84E-39 | |
标准差 | pr=0 | 0.00E+00 | 1.46E-40 | 4.63E-03 | 0.00E+00 | 4.38E-88 | 2.38E-44 |
pr=0.001 | 0.00E+00 | 1.41E-40 | 4.68E-03 | 1.41E-01 | 2.14E-87 | 3.39E-44 | |
pr=0.005 | 0.00E+00 | 2.79E-38 | 3.05E-03 | 1.41E-01 | 1.19E-87 | 5.19E-43 | |
pr=0.01 | 0.00E+00 | 7.83E-41 | 5.13E-03 | 0.00E+00 | 6.08E-87 | 2.28E-43 | |
pr=0.05 | 0.00E+00 | 5.44E-38 | 3.74E-03 | 0.00E+00 | 1.45E-82 | 1.32E-42 | |
pr=0.1 | 0.00E+00 | 3.13E-37 | 4.40E-03 | 0.00E+00 | 5.61E-78 | 2.01E-39 |
表3
GDBSO设置不同参数在30维度下寻优结果"
标准测试函数 | f1 | f2 | f3 | f4 | f5 | f6 | |
平均值 | pr=0 | 1.21E-01 | 5.51E-16 | 8.56E-03 | 2.32E+01 | 5.69E-139 | 9.83E-77 |
pr=0.001 | 1.29E-01 | 3.53E-16 | 8.91E-03 | 2.33E+01 | 1.23E-139 | 1.77E-76 | |
pr=0.005 | 6.85E-02 | 4.42E-16 | 5.62E-03 | 2.35E+01 | 1.50E-139 | 1.59E-74 | |
pr=0.01 | 1.95E-01 | 3.44E-16 | 7.53E-03 | 2.26E+01 | 1.92E-139 | 8.56E-76 | |
pr=0.05 | 1.21E-01 | 3.22E-16 | 8.36E-03 | 2.48E+01 | 2.03E-134 | 2.87E-73 | |
pr=0.1 | 1.48E-01 | 3.50E-16 | 8.32E-03 | 2.24E+01 | 4.08E-128 | 3.24E-69 | |
标准差 | pr=0 | 3.06E-01 | 6.04E-16 | 8.35E-03 | 7.49E+00 | 2.53E-138 | 2.32E-76 |
pr=0.001 | 3.57E-01 | 4.92E-16 | 7.72E-03 | 8.50E+00 | 6.36E-139 | 5.89E-76 | |
pr=0.005 | 2.77E-01 | 4.54E-16 | 4.58E-03 | 6.87E+00 | 7.36E-139 | 5.57E-74 | |
pr=0.01 | 4.55E-01 | 4.60E-16 | 7.96E-03 | 7.36E+00 | 8.63E-139 | 2.92E-75 | |
pr=0.05 | 3.32E-01 | 3.49E-16 | 9.12E-03 | 8.15E+00 | 1.04E-133 | 5.20E-73 | |
pr=0.1 | 3.74E-01 | 4.57E-16 | 7.08E-03 | 5.50E+00 | 1.41E-127 | 8.02E-69 |
表4
不同算法在3维度下寻优结果"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||||
f1 | 2.27E-05 | 1.18E-05 | 4.66E-10 | 1.37E-09 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 | |||
f2 | 2.67E-06 | 3.59E-06 | 1.70E-12 | 9.17E-12 | 4.19E-39 | 2.79E-38 | 3.23E-22 | 2.24E-21 | |||
f3 | 1.49E-01 | 1.65E-01 | 4.34E-03 | 2.84E-03 | 4.88E-03 | 3.05E-03 | 5.42E-03 | 4.45E-03 | |||
f4 | 9.95E-02 | 3.23E-01 | 1.99E-02 | 1.41E-01 | 1.99E-02 | 1.41E-01 | 0.00E+00 | 0.00E+00 | |||
f5 | 1.34E-10 | 1.25E-10 | 2.12E-19 | 8.08E-19 | 4.23E-88 | 1.19E-87 | 1.78E-66 | 4.30E-66 | |||
f6 | 1.90E-05 | 7.41E-06 | 1.59E-10 | 4.67E-10 | 4.00E-43 | 5.19E-43 | 9.67E-33 | 1.15E-32 |
表5
不同算法在50维度下寻优结果"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||||
f1 | 1.73E+00 | 5.77E-01 | 1.61E-10 | 7.63E-11 | 1.28E+00 | 6.68E-01 | 9.09E-01 | 6.15E-01 | |||
f2 | 5.35E+00 | 3.00E+00 | 8.54E-05 | 3.94E-04 | 1.87E-15 | 9.34E-16 | 2.05E-15 | 1.25E-15 | |||
f3 | 6.58E-03 | 7.57E-03 | 3.80E-03 | 2.64E-03 | 7.87E-03 | 9.18E-03 | 3.50E-03 | 1.80E-03 | |||
f4 | 8.06E+01 | 2.20E+01 | 2.67E+01 | 5.45E+00 | 4.66E+01 | 1.14E+01 | 1.05E+02 | 2.96E+01 | |||
f5 | 2.23E-07 | 1.94E-07 | 9.59E-19 | 1.08E-18 | 8.64E-125 | 5.56E-124 | 1.06E-90 | 3.45E-90 | |||
f6 | 6.68E+02 | 1.03E+02 | 8.39E-08 | 3.88E-07 | 6.29E-74 | 1.87E-72 | 5.72E-51 | 9.21E-51 |
1 | 申海. 集群智能及其应用[M]. 北京: 科学出版社, 2019: 41- 43. |
SHEN H . Swarm intelligence and its application[M]. Beijing: Science Press, 2019: 41- 43. | |
2 | SHI Y H. Brain storm optimization algorithm[C]//Proc. of the 2nd International Conference on Swarm Intelligence, 2011: 303-309. |
3 |
SUN C H , DUAN H B , SHI Y H . Optimal satellite formation reconfiguration based on closed-loop brain storm optimization[J]. IEEE Computational Intelligence Magazine, 2013, 8 (4): 39- 51.
doi: 10.1109/MCI.2013.2279560 |
4 |
DUAN H B , LI S T , SHI Y H . Predator-prey brain storm optimization for DC brushless motor[J]. IEEE Trans.on Magnetics, 2013, 49 (10): 5336- 5340.
doi: 10.1109/TMAG.2013.2262296 |
5 | CHEN J F, CHENG S, CHEN Y, et al. Enhanced brain storm optimization algorithm for wireless sensor networks deployment[C]// Proc. of the 6th International Conference on Swarm Intelligence, 2015: 373-381. |
6 | 陈山, 宋樱, 房胜男. 基于头脑风暴优化算法的Wiener模型参数辨识[J]. 控制与决策, 2017, 32 (12): 2291- 2295. |
CHEN S , SONG Y , FANG S N . Parameter identification of Wiener systems using brain storm optimization algorithm[J]. Control and Decision, 2017, 32 (12): 2291- 2295. | |
7 | 梁志刚, 顾军华. 改进头脑风暴优化算法与Powell算法结合的医学图像配准[J]. 计算机应用, 2018, 38 (9): 2683- 2688. |
LIANG Z G , GU J H . Medical image registration by integrating modified brain storm optimization algorithm and Powell algorithm[J]. Journal of Computer Applications, 2018, 38 (9): 2683- 2688. | |
8 | 李怡敏, 王宝珠, 刘翠响. DBBSO算法在低空航线规划中的应用[J]. 现代电子技术, 2019, 42 (22): 108- 112. |
LI Y M , WANG B Z , LIU C X . Application of DBBSO algorithm in low-altitude air route planning[J]. Modern Electronics Technique, 2019, 42 (22): 108- 112. | |
9 | CAO Z J, WANG L. An active learning brain storm optimization algorithm with a dynamically changing cluster cycle for global optimization[EB-OL]. [2021-01-13]. https://doi.org/10-1007/s10586-019-02918-0. |
10 | SHI Y H. Brain storm optimization algorithm in objective space[C]// Proc. of the IEEE Congress on Evolutionary Computation, 2015: 1227-1234. |
11 |
CHENG S , QIN Q D , CHEN J F , et al. Brain storm optimization algorithm: a review[J]. Artificial Intelligence Review, 2016, 46 (4): 445- 458.
doi: 10.1007/s10462-016-9471-0 |
12 | LIU J N, PENG H, WU Z J, et al. Multi-strategy brain storm optimization algorithm with dynamic parameters adjustment[EB-OL]. [2021-01-13]. https://doi.org/10.1007/s10489-019-016007-0. |
13 |
YANG Y T , SHI Y H , XIA S R . Advanced discussion mechanism-based brain storm optimization algorithm[J]. Soft Computing, 2015, 19 (10): 2997- 3007.
doi: 10.1007/s00500-014-1463-x |
14 | DAI C , LEI X J . A multi-objective brain storm optimization algorithm based on decomposition[J]. Complexity, 2019, 2019, 5301284. |
15 |
GUO Y N , YANG H C , CHEN M R , et al. Grid-based dynamic robust multi-objective brain storm optimization algorithm[J]. Soft Computing, 2020, 24 (10): 7395- 7475.
doi: 10.1007/s00500-019-04365-w |
16 |
PENG H , DENG C S , WU Z J . SPBSO: self-adaptive brain storm optimization algorithm with pbest guided step-size[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36 (6): 5423- 5434.
doi: 10.3233/JIFS-181310 |
17 | ZHAN Z H, ZHANG J, SHI Y H, et al. A modified brain storm optimization[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2012: 1969-1976. |
18 | ZHU H Y, SHI Y H. Brain storm optimization algorithms with k-medians clustering algorithms[C]//Proc. of the IEEE 7th International Conference on Advanced Computational Intelligence, 2015: 107-110. |
19 |
EL-ABD M . Global-best brain storm optimization algorithm[J]. Swarm and Evolutionary Computation, 2017, 37, 27- 44.
doi: 10.1016/j.swevo.2017.05.001 |
20 |
ZHU G P , KWONG S . Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217, 3166- 3173.
doi: 10.1016/j.amc.2010.08.049 |
21 |
EL-ABD M . An improved global-best harmony search algorithm[J]. Applied Mathematics and Computation, 2013, 222, 94- 106.
doi: 10.1016/j.amc.2013.07.020 |
22 |
XIANG W L , AN M Q , LI Y Z , et al. An improved global-best harmony search algorithm for faster optimization[J]. Expert Systems with Applications, 2014, 41 (13): 5788- 5803.
doi: 10.1016/j.eswa.2014.03.016 |
23 | DI L, ZHENG Z, XIA M, et al. Robot path planning based on an improved multi-objective PSO method[C]//Proc. of the 1st International Conference on Computer Engineering, Information Science & Application Technology, 2016: 496-501. |
24 | 冯炜, 张静远, 王众, 等. 海洋环境下基于量子行为粒子群优化的时间最短路径规划方法[J]. 海军工程大学学报, 2017, 29 (6): 72- 77. |
FENG W , ZHANG J Y , WANG Z , et al. A time-optimal path planning method based on quantum-behaved particle swarm optimization in ocean environment[J]. Journal of Naval University of Engineering, 2017, 29 (6): 72- 77. | |
25 | 张岳星, 王轶群, 李硕, 等. 基于海图和改进粒子群优化算法的AUV全局路径规划[J]. 机器人, 2020, 42 (1): 120- 128. |
ZHANG Y X , WANG Y Q , LI S , et al. Global path planning for AUV based on charts and the improved particle swarm optimization algorithm[J]. Robot, 2020, 42 (1): 120- 128. | |
26 | 赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法研究[J]. 国防科技大学学报, 2021, 43 (1): 41- 48. |
ZHAO M , GAO Y Q , WU D X , et al. Research on AUV global path planning method in complex sea battle field environment[J]. Journal of National University of Defense Technology, 2021, 43 (1): 41- 48. | |
27 | BASAK A, PAL S, DAS S, et al. Circular antenna array synthesis with a differential invasive weed optimization algorithm[C]// Proc. of the IEEE 10th International Conference on Hybrid Intelligent Systems, 2010: 153-158. |
[1] | 冯豪博, 胡桥, 赵振轶. 基于精英族系遗传算法的AUV集群路径规划[J]. 系统工程与电子技术, 2022, 44(7): 2251-2262. |
[2] | 高永琪, 马威强, 张林森, 王鹏, 赵苗. 分布式多AUV协同搜索方法[J]. 系统工程与电子技术, 2022, 44(5): 1670-1676. |
[3] | 尹洋, 杨全顺, 王征, 刘洋. 通信距离约束下的无人船集群覆盖搜索方法[J]. 系统工程与电子技术, 2022, 44(12): 3821-3828. |
[4] | 杨清清, 高盈盈, 郭玙, 夏博远, 杨克巍. 基于深度强化学习的海战场目标搜寻路径规划[J]. 系统工程与电子技术, 2022, 44(11): 3486-3495. |
[5] | 张怀强, 李铁成, 杜军岗. 舰载导弹系统故障率及保修期模型优化[J]. 系统工程与电子技术, 2022, 44(1): 347-356. |
[6] | 董庆, 李本威, 闫思齐, 钱仁军. 基于BSO-ELM的涡轴发动机加速过程性能参数预测[J]. 系统工程与电子技术, 2021, 43(8): 2181-2188. |
[7] | 焦志强, 张杰勇, 姚佩阳, 王勋, 何宜超. 基于分层结构的C4ISR服务部署分布式演化方法[J]. 系统工程与电子技术, 2021, 43(6): 1572-1585. |
[8] | 王文明, 杜佳璐. 基于正六边形栅格JPS算法的智能体路径规划[J]. 系统工程与电子技术, 2021, 43(12): 3635-3642. |
[9] | 李亚南, 黄海滨, 陈亮名, 庄宇飞, 王晓丽. 变化海流环境下AUV能量最优三维路径规划[J]. 系统工程与电子技术, 2021, 43(12): 3667-3674. |
[10] | 李文刚, 汪流江, 方德翔, 李玉玮, 黄郡. 联合A*与动态窗口法的路径规划算法[J]. 系统工程与电子技术, 2021, 43(12): 3694-3702. |
[11] | 陈岱岱, 李玩幽. 带拖线阵的水面无人艇局部路径规划算法[J]. 系统工程与电子技术, 2020, 42(9): 1988-1994. |
[12] | 张泉先, 曾斌, 李厚朴. 海况影响下的分布式海战补给路径规划方法[J]. 系统工程与电子技术, 2020, 42(10): 2312-2319. |
[13] | 杨秀霞, 曹唯一, 张毅. 时间和角度约束下的双圆弧路径规划[J]. 系统工程与电子技术, 2019, 41(8): 1835-1843. |
[14] | 胡腾, 刘占军, 刘洋, 夏帅帅, 陈前斌. 多无人机3D侦察路径规划[J]. 系统工程与电子技术, 2019, 41(7): 1551-1559. |
[15] | 高春庆, 寇英信, 李战武, 徐安, 李游, 常一哲. 小型无人机协同覆盖侦察路径规划[J]. 系统工程与电子技术, 2019, 41(6): 1294-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||