1 |
ZHAO Y , ZHENG Z , LIU Y . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158, 54- 64.
doi: 10.1016/j.knosys.2018.05.033
|
2 |
沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35 (3): 593- 606.
|
|
SHEN L C , CHEN J , WANG N . A review of mission planning techniques for aircraft[J]. Journal of Aeronautics, 2014, 35 (3): 593- 606.
|
3 |
胡中华, 赵敏, 姚敏, 等. 无人机航迹规划技术研究及发展趋势[J]. 航空电子技术, 2009, 40 (2): 24- 29, 36.
doi: 10.3969/j.issn.1006-141X.2009.02.006
|
|
HU Z H , ZHAO M , YAO M , et al. Research and development trend of unmanned aircraft trajectory planning technology[J]. Avionics, 2009, 40 (2): 24- 29, 36.
doi: 10.3969/j.issn.1006-141X.2009.02.006
|
4 |
WU X L , XU L , ZHEN R , et al. Bi-directional adaptive A* algorithm toward optimal path planning for large-scale UAV under multi-constraints[J]. IEEE Access, 2020, 8, 85431- 85440.
doi: 10.1109/ACCESS.2020.2990153
|
5 |
MIAO Y F , LUO Z , XIA L S . Application of improved sparse A* algorithm in UAV path planning[J]. Information Technology Journal, 2013, 12 (17): 4058- 4062.
doi: 10.3923/itj.2013.4058.4062
|
6 |
程凝怡, 刘志乾, 李昱奇. 一种基于Dijkstra的多约束条件下智能飞行器航迹规划算法[J]. 西北工业大学学报, 2020, 38 (6): 1284- 1290.
doi: 10.3969/j.issn.1000-2758.2020.06.018
|
|
CHENG N Y , LIU Z Q , LI Y Q . A Dijkstra-based algorithm for intelligent vehicle trajectory planning under multiple constraints[J]. Journal of Northwestern Polytechnical University, 2020, 38 (6): 1284- 1290.
doi: 10.3969/j.issn.1000-2758.2020.06.018
|
7 |
KARVE D , KAPADIA F . Multi-UAV path planning using modified Dijkstra's algorithm[J]. International Journal of Computer Applications, 2020, 175 (28): 26- 33.
doi: 10.5120/ijca2020920816
|
8 |
王伟, 王华. 基于约束人工势场法的弹载飞行器实时避障航迹规划[J]. 航空动力学报, 2014, 29 (7): 1738- 1743.
|
|
WANG W , WANG H . Real-time obstacle avoidance trajectory planning for ballistic vehicles based on constrained artificial potential field method[J]. Journal of Aerodynamics, 2014, 29 (7): 1738- 1743.
|
9 |
CHEN Y B , LUO G C , MEI Y S , et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47 (6): 1407- 1420.
doi: 10.1080/00207721.2014.929191
|
10 |
SUN J Y , TANG J , LAO S Y . Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5, 18382- 18390.
doi: 10.1109/ACCESS.2017.2746752
|
11 |
KOTHARI M , POSTLETHWAITE I . A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees[J]. Journal of Intelligent and Robotic Systems, 2013, 71 (2): 231- 253.
doi: 10.1007/s10846-012-9776-4
|
12 |
WU X J , XU L , ZHEN R , et al. Biased sampling potentially guided intelligent bidirectional RRT algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019 (8): 5157403.
|
13 |
李文广, 胡永江, 庞强伟, 等. 基于改进遗传算法的多无人机协同侦察航迹规划[J]. 中国惯性技术学报, 2020, 28 (2): 248- 255.
|
|
LI W G , HU Y J , PANG Q W , et al. Cooperative reconnaissance track planning for multiple UAVs based on improved genetic algorithm[J]. Chinese Journal of Inertial Technology, 2020, 28 (2): 248- 255.
|
14 |
LIN C E , SYU Y M . GA/DP hybrid solution for UAV multi-target path planning[J]. Journal of Aeronautics Astronautics & Aviation, 2016, 48 (3): 203- 220.
|
15 |
PAN J S , LIU N X , CHU S C , et al. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning[J]. IEEE Access, 2020, 8, 17691- 17712.
doi: 10.1109/ACCESS.2020.2968119
|
16 |
YU X , LI C , ZHOU J F . A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios[J]. Knowledge-Based Systems, 2020, 204, 106209.
doi: 10.1016/j.knosys.2020.106209
|
17 |
XU C F , DUAN H B , LIU F , et al. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning[J]. Aerospace Science and Technology, 2010, 14 (8): 535- 541.
doi: 10.1016/j.ast.2010.04.008
|
18 |
DING L , WU H , YAO Y , et al. UAV path planning by probability-scaling adaptive chaotic artificial bee colony algorithm[J]. Journal of Computational Information Systems, 2015, 11 (11): 4135- 4143.
|
19 |
黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40 (7): 1532- 1538.
|
|
HUANG C Q , ZHAO K X . Improved ant-lion algorithm-based 3D trajectory planning for UAVs[J]. Journal of Electronics and Information, 2018, 40 (7): 1532- 1538.
|
20 |
YAO P , WANG H L . Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle[J]. Soft Computing: a Fusion of Foundations, Methodologies and Applications, 2017, 21 (18): 5475- 5488.
|
21 |
DEWANGAN R K , SHUKLA A , GODFREY W W . Three-dimensional path planning using Grey wolf optimizer for UAVs[J]. Applied Intelligence, 2019, 49 (6): 2201.
doi: 10.1007/s10489-018-1384-y
|
22 |
单文昭, 崔乃刚, 黄蓓, 等. 基于PSO-HJ算法的多无人机协同航迹规划方法[J]. 中国惯性技术学报, 2020, 28 (1): 122- 128.
|
|
SHAN W Z , CUI N G , HUANG B , et al. Multiple UAV cooperative path planning based on PSO-HJ method[J]. Journal of Chinese Inertial Technology, 2020, 28 (1): 122- 128.
|
23 |
徐瑞莲, 周新志, 宁芊. 基于改进差分进化算法的多无人机航迹规划[J]. 火力与指挥控制, 2020, 45 (1): 169- 173, 179.
doi: 10.3969/j.issn.1002-0640.2020.01.034
|
|
XU R L , ZHOU X Z , YU Q . Multi-UAV trajectory planning based on improved differential evolutionary algorithm[J]. Firepower and Command Control, 2020, 45 (1): 169- 173, 179.
doi: 10.3969/j.issn.1002-0640.2020.01.034
|
24 |
MIAO H . Dynamic robot path planning using an enhanced simulated annealing approach[J]. Applied Mathematics & Computation, 2013, 222 (5): 420- 437.
|
25 |
XUE J , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering: an Open Access Journal, 2020, 8 (1): 22- 34.
|
26 |
汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[EB/OL]. [2021-01-16]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html.
|
|
TANG A D, HAN T, XU D W, et al. An approach to UAV trajectory planning based on chaotic sparrow search algorithm[EB/OL]. [2021-01-16]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html.
|
27 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
28 |
ZHAO W G , ZHANG Z X , WANG L Y . Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87 (1): 103300.
|