系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 181-191.doi: 10.12305/j.issn.1001-506X.2022.01.23
任耀军, 袁修久*, 黄林
收稿日期:
2020-09-12
出版日期:
2022-01-01
发布日期:
2022-01-19
通讯作者:
袁修久
作者简介:
任耀军(1996—), 男, 硕士研究生, 主要研究方向为军事仿真理论及技术|袁修久(1966—), 男, 教授, 博士, 主要研究方向为军事仿真理论及技术|黄林(1996—), 男, 硕士研究生, 主要研究方向为军事仿真理论及技术
基金资助:
Yaojun REN, Xiujiu YUAN*, Lin HUANG
Received:
2020-09-12
Online:
2022-01-01
Published:
2022-01-19
Contact:
Xiujiu YUAN
摘要:
为解决更为广泛的模糊决策问题, 同时使决策信息与人的认知思维更为贴近, 结合q阶犹豫模糊集和三角模糊数, 提出了q阶三角犹豫模糊集的概念并定义了q阶三角犹豫模糊集运算。为了刻画信息集成过程中评价信息之间存在的关联关系, 将Bonferroni平均算子推广至q阶三角犹豫模糊集, 提出了q阶三角犹豫模糊Bonferroni平均算子。为了刻画更多的关联关系, 将广义Bonferroni平均算子推广至q阶三角犹豫模糊集, 提出了q阶三角犹豫模糊广义Bonferroni平均算子。考虑不同属性的评价信息的重要程度不同, 提出了其加权形式。最后, 提出了q阶三角犹豫模糊环境下的多属性决策方法, 并以算例验证了实验结果。
中图分类号:
任耀军, 袁修久, 黄林. q阶三角犹豫模糊BM算子及其多属性决策应用[J]. 系统工程与电子技术, 2022, 44(1): 181-191.
Yaojun REN, Xiujiu YUAN, Lin HUANG. q-rung hesitant triangular fuzzy BM operator and its application in multiple criteria decision making[J]. Systems Engineering and Electronics, 2022, 44(1): 181-191.
表1
q阶三角犹豫模糊决策矩阵"
网络系统 | 评估因素 | |||
M1 | M2 | M3 | M4 | |
A1 | 〈{(0.6, 0.7, 0.8), (0.7, 0.8, 0.9)}, {(0.4, 0.5, 0.6)}〉 | 〈{(0.3, 0.4, 0.5)}, {(0.7, 0.8, 0.9)}〉 | 〈{(0.4, 0.5, 0.6)}, {(0.5, 0.6, 0.7), (0.6, 0.7, 0.8)}〉 | 〈{(0.3, 0.4, 0.5), (0.4, 0.5, 0.6)}, {(0.6, 0.7, 0.8), (0.7, 0.8, 0.9)}〉 |
A2 | 〈{(0.4, 0.5, 0.6)}, {(0.4, 0.5, 0.6), (0.5, 0.6, 0.8)}〉 | 〈{(0.6, 0.7, 0.8), (0.7, 0.8, 0.9)}, {(0.3, 0.4, 0.5), (0.4, 0.5, 0.6)}〉 | 〈{(0.4, 0.6, 0.7), (0.6, 0.7, 0.8)}{(0.2, 0.3, 0.4), (0.3, 0.4, 0.5)}〉 | 〈{(0.3, 0.4, 0.5)}, {(0.6, 0.7, 0.8)}〉 |
A3 | 〈{(0.5, 0.6, 0.7), (0.6.0.7.0.8)}, {(0.4, 0.5, 0.6), (0.5, 0.6, 0.7)}〉 | 〈{(0.1, 0.2, 0.3), (0.2, 0.3, 0.4)}, {(07, 0.8, 0.9)}〉 | 〈{(0.5, 0.6, 0.7)}, {(0.4, 0.5, 0, 6), (0.6, 0.7, 0.8)}〉 | 〈{(0.3, 0.4, 0.5), (0.4, 0.5, 0.6)}, {(0.5, 0.7, 0.8), (0.7, 0.8, 0.9)}〉 |
A4 | 〈{(0.6, 0.7, 0.8), (0.7, 0.8, 0.9)}, {(0.4, 0.5, 0.6)}〉 | 〈{(0.2, 0.3, 0.5), (0.4, 0.5, 0.6)}, {(0.6, 0.7, 0.8)}〉 | 〈{(0.3, 0.4, 0.5), (0.4, 0.5, 0.6)}, {(0.5, 0.6, 0.7), (0.6, 0.7, 0.8)}〉 | 〈{(0.4, 0.5, 0.6)}, {(0.6, 0.7, 0.8), (0.7, 0.8, 0.9)}〉 |
A5 | 〈{(0.5, 0.6, 0.8), (0.7, 0.8, 0.9)}, {(0.3, 0.4, 0.5), (0.4, 0.5, 0.6)}〉 | 〈{(0.3, 0.4, 0.5), (0.5, 0.6, 0.7)}, {(0.5, 0.6, 0.7), (0.6, 0.7, 0.8)}〉 | 〈{(0.2, 0.3, 0.4)}, {(0.6, 0.7, 0.8)}〉 | 〈{(0.3, 0.4, 0.5)}, {(0.7, 0.8, 0.9)}〉 |
表2
q阶三角犹豫模糊综合评估值(q-HTFWBM)"
综合评估 | 取值 |
h1 | 〈{(0.263 6, 0.330 5, 0.401 2), (0.285 0, 0.351 8, 0.423 1), (0.285 7, 0.355 9, 0.432 4), (0.308 6, 0.378 5, 0.455 5)}, {(0.870 8, 0.904 7, 0.935 7), (0.882 5, 0.915 7, 0.946 7), (0.876 7, 0.909 9, 0.940 4), (0.888 4, 0.920 8, 0.951 5)}〉 |
h2 | 〈{(0.271 1, 0.346 9, 0.418 5), (0.293 2, 0.360 0, 0.433 3), (0.292 2, 0.370 6, 0.448 7), (0.313 9, 0.383 4, 0.463 1)}, {(0.803 6, 0.849 2, 0.887 8), (0.814 3, 0.857 0, 0.893 9), (0.815 7, 0.859 0, 0.896 0), (0.826 3, 0.866 7, 0.902 0), (0.816 1, 0.860 5, 0.909 6), (0.826 4, 0.868 0, 0.915 1), (0.827 5, 0.869 7, 0.916 7), (0.837 5, 0.876 9, 0.922 0)}〉 |
h3 | 〈{(0.243 1, 0.304 1, 0.369 8), (0.263 1, 0.325 0, 0.391 6), (0.246 4, 0.309 5, 0.376 8), (0.265 7, 0.329 5, 0.397 5), (0.265 9, 0.328 6, 0.397 1), (0.286 8, 0.350 4, 0.419 8), (0.269 2, 0.333 9, 0.403 9), (0.289 3, 0.354 7, 0.425 4)}, {(0.852 2, 0.899 1, 0.930 8), (0.875 7, 0.910 0, 0.941 7), (0.865 0, 0.909 9, 0.940 4), (0.888 4, 0.920 8, 0.951 5), (0.862 5, 0.907 5, 0.938 4), (0.884 3, 0.917 7, 0.948 3), (0.875 0, 0.917 8, 0.947 2), (0.896 4, 0.927 8, 0.957 1)}〉 |
h4 | 〈{(0.269 8, 0.334 9, 0.415 1), (0.277 8, 0.343 1, 0.423 1), (0.291 0, 0.358 1, 0.429 7), (0.297 1, 0.364 7, 0.436 8), (0.293 1, 0.361 3, 0.447 5), (0.301 2, 0.369 7, 0.455 5), (0.314 9, 0.384 9, 0.462 4), (0.321 0, 0.391 6, 0.469 5)}, {(0.861 6, 0.896 4, 0.927 8), (0.873 4, 0.907 4, 0.938 6), (0.867 6, 0.901 5, 0.932 4), (0.879 3, 0.912 5, 0.943 3)}〉 |
h5 | 〈{(0.226 3, 0.291 0, 0.384 9), (0.265 1, 0.329 0, 0.425 6), (0.269 3, 0.339 7, 0.415 7), (0.313 7, 0.381 9, 0.458 6)}, {(0.861 2, 0.896 5, 0.928 9), (0.871 4, 0.905 6, 0.937 6), (0.869 7, 0.904 0, 0.935 4), (0.879 3, 0.912 5, 0.943 3)}〉 |
表4
排序结果"
算子 | 参数选择 | 得分函数 | 排序结果 |
q-HTFWBM | s=1, t=1 | S(h1)=(0.171 1, 0.220 7, 0.274 2), S(h2)=(0.193 6, 0.250 9, 0.310 0), S(h3)=(0.160 9, 0.207 8, 0.261 4), S(h4)=(0.180 1, 0.229 5, 0.286 0), S(h5)=(0.166 2, 0.215 4, 0.275 4) | (2, 4, 1, 5, 3) |
q-HTFWBM | s=1, t=2 | S(h1)=(0.192 6, 0.243 4, 0.298 9), S(h2)=(0.201 8, 0.258 5, 0.318 2), S(h3)=(0.176 3, 0.224 4, 0.279 5), S(h4)=(0.200 4, 0.251 2, 0.308 9), S(h5)=(0.187 4, 0.237 8, 0.302 4) | (2, 4, 1, 5, 3) |
q-HTFWBM | s=2, t=2 | S(h1)=(0.184 3, 0.235 8, 0.291 4), S(h2)=(0.203 3, 0.258 8, 0.318 4), S(h3)=(0.174 8, 0.223 0, 0.278 7), S(h4)=(0.196 1, 0.247 7, 0.304 6), S(h5)=(0.183 0, 0.233 9, 0.297 0) | (2, 4, 5, 1, 3) |
q-HTFGWBM | s=1, t=1, r=1 | S(h1)=(0.374 2, 0.470 8, 0.569 0), S(h2)=(0.389 3, 0.499 2, 0.596 7), S(h3)=(0.338 6, 0.434 9, 0.539 9), S(h4)=(0.389 5, 0.486 4, 0.586 8), S(h5)=(0.370 8, 0.466 9, 0.578 9) | (2, 4, 5, 1, 3) |
q-HTFGWBM | s=1, t=1, r=2 | S(h1)=(0.391 4, 0.484 9, 0.581 0), S(h2)=(0.404 8, 0.511 6, 0.607 5), S(h3)=(0.351 6, 0.445 8, 0.549 5), S(h4)=(0.403 8, 0.498 5, 0.596 5), S(h5)=(0.387 6, 0.480 9, 0.592 6) | (2, 4, 5, 1, 3) |
q-HTFGWBM | s=1, t=2, r=2 | S(h1)=(0.402 0, 0.493 3, 0.587 7), S(h2)=(0.414 2, 0.518 7, 0.613 4), S(h3)=(0.359 5, 0.452 2, 0.554 9), S(h4)=(0.412 5, 0.505 6, 0.601 8), S(h5)=(0.397 9, 0.489 1, 0.600 3) | (2, 4, 5, 1, 3) |
q-HTFGWBM | s=2, t=2, r=2 | S(h1)=(0.409 3, 0.498 9, 0.592 0), S(h2)=(0.420 4, 0.523 4, 0.617 1), S(h3)=(0.364 9, 0.456 4, 0.558 3), S(h4)=(0.418 4, 0.510 2, 0.605 2), S(h5)=(0.404 9, 0.494 3, 0.605 1) | (2, 4, 5, 1, 3) |
q-HTFWA | — | S(h1)=(0.393 0, 0.493 8, 0.599 2), S(h2)=(0.407 8, 0.519 9, 0.624 7), S(h3)=(0.407 2, 0.510 1, 0.616 1), S(h4)=(0.425 5, 0.526 5, 0.632 3), S(h5)=(0.393 8, 0.494 5, 0.616 7) | (4, 2, 3, 5, 1) |
q-HTFWG | — | S(h1)=(0.320 3, 0.426 9, 0.529 4), S(h2)=(0.350 8, 0.467 0, 0.567 3), S(h3)=(0.278 6, 0.388 6, 0.499 9), S(h4)=(0.341 2, 0.446 6, 0.556 0), S(h5)=(0.308 5, 0.416 4, 0.527 0) | (2, 4, 1, 5, 3) |
DHq-ROFWMM[ | P=(1, 1, 0, 0) | S(h1L)=0.203 1, S(h2L)=0.235 8, S(h3L)=0.195 6, S(h4L)=0.212 6, S(h5L)=0.199 1 S(h1M)=0.220 7, S(h2M)=0.250 9, S(h3M)=0.207 8, S(h4M)=0.229 5, S(h5M)=0.215 4 S(h1R)=0.242 2, S(h2R)=0.267 8, S(h3R)=0.226 7, S(h4R)=0.253 5, S(h5R)=0.242 5 | (2, 4, 1, 5, 3) (2, 4, 1, 5, 3) (2, 4, 5, 1, 3) |
1 |
ZADEH L A . Fuzzy sets[J]. Information and Control, 1965, 8 (3): 338- 353.
doi: 10.1016/S0019-9958(65)90241-X |
2 |
ATANASSOV K T . Intuitionistic fuzzy set[J]. Fuzzy Sets and Systems, 1986, 20 (1): 87- 96.
doi: 10.1016/S0165-0114(86)80034-3 |
3 |
YAGER R R . Pythagorean membership grades in multicriteria decision making[J]. IEEE Trans.on Fuzzy Systems, 2014, 22 (4): 958- 965.
doi: 10.1109/TFUZZ.2013.2278989 |
4 | YAGER R R . Generalized orthopair fuzzy sets[J]. IEEE Trans.on Fuzzy Systems, 2016, 25 (5): 1222- 1230. |
5 | TORRA V . Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25, 529- 539. |
6 | TORRA V, NARUKAWA Y. On the hesitant fuzzy sets and decision[C]//Proc. of the IEEE 18th International Conference on Fuzzy Systems, 2009: 1378-1382. |
7 |
PENG J J , WANG J Q , WU X H , et al. The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making[J]. International Journal of Systems Science, 2015, 46 (13): 2335- 2350.
doi: 10.1080/00207721.2014.993744 |
8 |
LIANG D C , XU Z S . The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets[J]. Applied Soft Computing, 2017, 60, 167- 179.
doi: 10.1016/j.asoc.2017.06.034 |
9 |
LIU D H , PENG D , LIU Z M . The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making[J]. International Journal of Intelligent Systems, 2019, 34 (9): 2104- 2121.
doi: 10.1002/int.22133 |
10 |
LIU P D , WANG P . Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33 (2): 259- 280.
doi: 10.1002/int.21927 |
11 | 刘金培, 林盛, 陈华友. 模糊Bonferroni平均算子及在多准则群决策中的应用[J]. 系统工程与电子技术, 2012, 34 (1): 115- 119. |
LIU J P , LIN S , CHEN H Y . Fuzzy Bonferroni mean operator and its application to multi-criteria group decision making[J]. Systems Engineering and Electronics, 2012, 34 (1): 115- 119. | |
12 |
徐泽水. 一种FOWG算子及其在模糊AHP中的应用[J]. 系统工程与电子技术, 2002, 24 (7): 31- 33, 36.
doi: 10.3321/j.issn:1001-506X.2002.07.010 |
XU Z S . A fuzzy ordered weighted geometric operator and its application in fuzzy AHP[J]. Systems Engineering and Electronics, 2002, 24 (7): 31- 33, 36.
doi: 10.3321/j.issn:1001-506X.2002.07.010 |
|
13 | 范建平, 闫彦, 吴美琴. 基于三角Pythagorean模糊集的多准则决策方法[J]. 控制与决策, 2019, 34 (8): 1601- 1608. |
FAN J P , YAN Y , WU M Q . Triangular Pythagorean fuzzy set and its application to multicriteria decision making[J]. Control and Decision, 2019, 34 (8): 1601- 1608. | |
14 | BONFERRONI C . Sullemedie multiple dipotenze[J]. Bolletino Matematica Italiana, 1950, 5 (3): 267- 270. |
15 |
YAGER R R . On generalized Bonferroni mean operators for multi-criteria aggregation[J]. International Journal of Approximate Reasoning, 2009, 50 (8): 1279- 1286.
doi: 10.1016/j.ijar.2009.06.004 |
16 |
ZHOU W , MENG S , CHEN M H . Hybrid atanassov intuitionistic fuzzy Bonferroni means for multi-criteria aggregation[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27 (5): 2679- 2690.
doi: 10.3233/IFS-141239 |
17 | LIU P D , RONG L L , CHU Y C . Intuitionistic linguistic weighted Bonferroni mean operator and its application to multiple attribute decision making[J]. The Scientific World Journal, 2014, 545049. |
18 |
LIANG D C , ZHANG Y R J , XU Z S , et al. Pythagorean fuzzy Bonferroni mean aggregation operator and its accelerative calculating algorithm with the multithreading[J]. International Journal of Intelligent Systems, 2018, 33 (3): 615- 633.
doi: 10.1002/int.21960 |
19 |
ZHU B , XU Z S . Hesitant fuzzy Bonferroni means for multi-criteria decision making[J]. Journal of the Operational Research Society, 2013, 64 (12): 1831- 1840.
doi: 10.1057/jors.2013.7 |
20 | SHI M H , XIAO Q X . Hesitant fuzzy linguistic aggregation operators based on global vision[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33 (1): 193- 206. |
21 | LIANG D C , DARKO A P , XU Z S , et al. Aggregation of dual hesitant fuzzy heterogenous related information with extended Bonferroni mean and its application to Multimoora[J]. Computers & Industrial Engineering, 2019, 135, 156- 176. |
22 |
BELIAKOV G , JAMES S , MORDELOVA J , et al. Genera-lized Bonferroni mean operators in multi-criteria aggregation[J]. Fuzzy Sets and Systems, 2010, 161 (17): 2227- 2242.
doi: 10.1016/j.fss.2010.04.004 |
23 | XIA M M , XU Z S , ZHU B . Generalized intuitionistic fuzzy Bonferroni means[J]. International Journal of Intelligent Systems, 2011, 27 (1): 23- 47. |
24 |
CHEN N , XU Z S , XIA M M . Interval-valued hesitant preference relations and their applications to group decision making[J]. Knowledge-Based Systems, 2013, 37, 528- 540.
doi: 10.1016/j.knosys.2012.09.009 |
25 |
YU D J . Hesitant triangular fuzzy set and its application to teaching quality evaluation[J]. Journal of Information and Computational Science, 2013, 10 (7): 1925- 1934.
doi: 10.12733/jics20102025 |
26 | LAARHOVEN P M J V , PEDRYCZ W . A fuzzy extension of Saaty's priority theory[J]. Fuzzy Sets & Systems, 1983, 11 (13): 199- 227. |
27 |
XU Z S . Fuzzy harmonic mean operators[J]. International Journal of Intelligent Systems, 2009, 24 (2): 152- 172.
doi: 10.1002/int.20330 |
28 |
XIA M M , XU Z S , ZHU B . Geometric bonferroni means with their application in multi-criteria decision making[J]. Know-ledge-Based Systems, 2013, 40, 88- 100.
doi: 10.1016/j.knosys.2012.11.013 |
29 |
WANG J , WEI G W , WEI C , et al. Dual hesitant q-rung orthopair fuzzy muirhead mean operators in multiple attribute decision making[J]. IEEE Access, 2019, 7, 67139- 67166.
doi: 10.1109/ACCESS.2019.2917662 |
[1] | 郑诺希, 李武, 周小强, 刘钢. 多属性相似度一致性投影决策法[J]. 系统工程与电子技术, 2022, 44(9): 2869-2877. |
[2] | 尹东亮, 崔国恒, 黄晓颖, 张欢. 基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策[J]. 系统工程与电子技术, 2022, 44(11): 3463-3469. |
[3] | 白静, 陈业华, 石蕊, 张亚明. 基于概率语言赋权交叉熵信度分配的应急决策[J]. 系统工程与电子技术, 2021, 43(2): 476-486. |
[4] | 李岩, 陈云翔, 罗承昆, 蔡忠义. 基于概率犹豫-直觉模糊熵和证据推理的多属性决策方法[J]. 系统工程与电子技术, 2020, 42(5): 1116-1123. |
[5] | 陈波, 郭圆圆, 高秀娥, 王运明, 杜秀丽. 区间直觉模糊幂加权算子的动态多属性决策[J]. 系统工程与电子技术, 2019, 41(4): 850-855. |
[6] | 李贺, 江登英. 基于改进符号距离的犹豫模糊前景理论决策方法[J]. 系统工程与电子技术, 2019, 41(12): 2820-2826. |
[7] | 汪汝根, 李为民, 罗骁, 吕诚中. 基于新距离测度的直觉模糊VIKOR多属性决策方法[J]. 系统工程与电子技术, 2019, 41(11): 2524-2532. |
[8] | 孙贵东, 关欣, 衣晓, 赵静. 基于Normative算子的HFS数值延拓方法及多属性决策应用[J]. 系统工程与电子技术, 2018, 40(7): 1530-1538. |
[9] | 弓晓敏, 于长锐. 基于云模型的改进TODIM方案评价方法[J]. 系统工程与电子技术, 2018, 40(7): 1539-1547. |
[10] | 谭旭, 吴俊江, 毛太田, 谭跃进. 基于三角模糊数犹豫直觉模糊集的多属性智能决策[J]. 系统工程与电子技术, 2017, 39(4): 829-836. |
[11] | 孙世岩, 朱惠民. PROMETHEE优先函数选择与参数配置方法[J]. 系统工程与电子技术, 2017, 39(1): 120-124. |
[12] | 李伟伟, 易平涛, 郭亚军, 井元伟. 模拟视角下广义混合型决策信息的综合集成[J]. 系统工程与电子技术, 2016, 38(6): 1339-1344. |
[13] | 桑惠云, 谢新连, 刘翠莲. 不确定条件下用于多方案比选的变权-SIR方法[J]. 系统工程与电子技术, 2016, 38(5): 1093-. |
[14] | 徐雪飞, 李建华, 沈迪, 郭蓉, 杨迎辉. 地空多元复杂网络用频优选模型研究[J]. 系统工程与电子技术, 2016, 38(1): 77-83. |
[15] | 殷春武, 侯明善, 李明翔. 姿态稳定控制器择优评价体系构建[J]. 系统工程与电子技术, 2016, 38(1): 130-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||