系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 181-191.doi: 10.12305/j.issn.1001-506X.2022.01.23

• 系统工程 • 上一篇    下一篇

q阶三角犹豫模糊BM算子及其多属性决策应用

任耀军, 袁修久*, 黄林   

  1. 空军工程大学基础部, 陕西 西安 710051
  • 收稿日期:2020-09-12 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 袁修久
  • 作者简介:任耀军(1996—), 男, 硕士研究生, 主要研究方向为军事仿真理论及技术|袁修久(1966—), 男, 教授, 博士, 主要研究方向为军事仿真理论及技术|黄林(1996—), 男, 硕士研究生, 主要研究方向为军事仿真理论及技术
  • 基金资助:
    国家自然科学基金(11671007);陕西省自然科学基金(2019JM-271);基础部研究生创新基金项目资助课题

q-rung hesitant triangular fuzzy BM operator and its application in multiple criteria decision making

Yaojun REN, Xiujiu YUAN*, Lin HUANG   

  1. Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China
  • Received:2020-09-12 Online:2022-01-01 Published:2022-01-19
  • Contact: Xiujiu YUAN

摘要:

为解决更为广泛的模糊决策问题, 同时使决策信息与人的认知思维更为贴近, 结合q阶犹豫模糊集和三角模糊数, 提出了q阶三角犹豫模糊集的概念并定义了q阶三角犹豫模糊集运算。为了刻画信息集成过程中评价信息之间存在的关联关系, 将Bonferroni平均算子推广至q阶三角犹豫模糊集, 提出了q阶三角犹豫模糊Bonferroni平均算子。为了刻画更多的关联关系, 将广义Bonferroni平均算子推广至q阶三角犹豫模糊集, 提出了q阶三角犹豫模糊广义Bonferroni平均算子。考虑不同属性的评价信息的重要程度不同, 提出了其加权形式。最后, 提出了q阶三角犹豫模糊环境下的多属性决策方法, 并以算例验证了实验结果。

关键词: q阶三角犹豫模糊集, Bonferroni平均算子, 广义Bonferroni平均算子, 多属性决策

Abstract:

In order to solve a wider range of fuzzy decision-making problems, and at the same time make decision information closer to human cognitive thinking, combining q-rung hesitant fuzzy sets and triangular fuzzy numbers, the concept of q-rung hesitant triangular fuzzy sets is proposed and the operation of q-rung hesitant triangular fuzzy sets is defined. In order to describe the relationship between evaluation information in the process of information integration, the Bonferroni mean operator is extend to the q-rung hesitant triangular fuzzy set, and the q-rung hesitant triangular fuzzy Bonferroni mean operator is proposed. In order to describe more correlations, the generalized Bonferroni mean operator is extend to the q-rung hesitant triangular fuzzy set, and the q-rung hesitant triangular fuzzy generalized Bonferroni mean operator is proposed. Considering that the importance of different attributes of evaluation information is different, their weighted form is proposed. In the end, a multi-attribute decision-making method under q-rung hesitant triangular fuzzy environment is proposed and verified the experimental results by an example.

Key words: q-rung hesitant triangular fuzzy set, Bonferroni mean operator, generalized Bonferroni mean operator, multiple criteria decision-making

中图分类号: