系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 172-180.doi: 10.12305/j.issn.1001-506X.2022.01.22
靳崇1,*, 孙娟1, 王永佳1, 蔡普申1,2, 荣鑫1
收稿日期:
2020-12-02
出版日期:
2022-01-01
发布日期:
2022-01-19
通讯作者:
靳崇
作者简介:
靳崇(1989—), 男, 副研究员, 博士, 主要研究方向为智能指挥与控制、智能辅助决策|孙娟(1986—), 女, 工程师, 硕士, 主要研究方向为工化指控总体技术|王永佳(1982—), 男,高级工程师,本科,主要研究方向为指挥控制|蔡普申(1986—), 男, 工程师, 博士, 主要研究方向为智能指控与决策、态势认知|荣鑫(1985—), 女, 工程师, 本科,主要研究方向为火力指挥控制原理与技术
Chong JIN1,*, Juan SUN1, Yongjia WANG1, Pushen CAI1,2, Xin RONG1
Received:
2020-12-02
Online:
2022-01-01
Published:
2022-01-19
Contact:
Chong JIN
摘要:
针对传统防空目标威胁评估中威胁因素考虑不全、定性指标量化不精确以及属性指标权重固定不变等方面的不足, 在综合考虑目标静态和动态属性的基础上, 提出了基于直觉模糊理想解逼近(technique for order preference by similarity to an ideal solution, TOPSIS)法和变权多准则优化妥协决策(multi-criteria optimization compromise decision-making, VIKOR)法的防空目标威胁综合评估方法。首先,直觉模糊集和隶属度函数分别用于静态和动态属性指标的量化。然后,构建直觉模糊TOPSIS模型和融合变权的VIKOR模型进行静态属性和动态属性威胁评估。最后,进行综合威胁度计算。仿真验证表明, 目标威胁综合评估方法与仅考虑目标运动状态信息的传统评估方法相比, 评估结果更加合理有效, 更符合防空作战实际。
中图分类号:
靳崇, 孙娟, 王永佳, 蔡普申, 荣鑫. 基于直觉模糊TOPSIS和变权VIKOR的防空目标威胁综合评估[J]. 系统工程与电子技术, 2022, 44(1): 172-180.
Chong JIN, Juan SUN, Yongjia WANG, Pushen CAI, Xin RONG. Threat comprehensive assessment for air defense targets based on intuitionistic fuzzy TOPSIS and variable weight VIKOR[J]. Systems Engineering and Electronics, 2022, 44(1): 172-180.
表1
来袭目标原始数据信息"
目标 | 目标类型威胁 | 火力打击能力 | 机动能力 | 电子对抗能力 | 进入角/(°) | 航路捷径/km | 飞临时间/s | 飞行速度/Ma | 高度/m |
M1 | 大(十分确定) | 极强(比较确定) | 很强(比较确定) | 很强(比较确定) | 123 | 12 | 300 | 2.2 | 15 000 |
M2 | 较大(比较确定) | 较强(一般) | 中等(比较确定) | 中等(比较确定) | 163 | 5 | 355 | 1.5 | 6 500 |
M3 | 很大(比较确定) | 很强(十分确定) | 强(一般) | 强(一般) | 145 | 4 | 380 | 1 | 10 000 |
M4 | 较大(比较确定) | 很强(不确定) | 极强(一般) | 较强(比较确定) | 115 | 2 | 430 | 0.4 | 5 500 |
M5 | 极大(十分确定) | 强(比较确定) | 稍弱(一般) | 较强(十分确定) | 150 | 5 | 150 | 3 | 3 500 |
M6 | 稍小(一般) | 很弱(比较确定) | 中等(十分确定) | 强(比较确定) | 148 | 6 | 390 | 0.8 | 8 000 |
表2
目标静态属性指标威胁评估参数"
目标 | F1 | F2 | F3 | F4 |
M1 | 〈0.788 7, 0.107 2〉 | 〈1.0, 0〉 | 〈0.843 5, 0.084 1〉 | 〈0.843 5, 0.084 1〉 |
M2 | 〈0.643 2, 0.191 7〉 | 〈0.575 7, 0.244 9〉 | 〈0.40, 0.40〉 | 〈0.40, 0.40〉 |
M3 | 〈0.843 5, 0.084 1〉 | 〈0.890 6, 0.055 5〉 | 〈0.653 6, 0.20〉 | 〈0.653 6, 0.20〉 |
M4 | 〈0.643 2, 0.191 7〉 | 〈0.498 4, 0.324 9〉 | 〈1.0, 0〉 | 〈0.643 2, 0.191 7〉 |
M5 | 〈1.0, 0〉 | 〈0.736 8, 0.141 4〉 | 〈0.40, 0.424 3〉 | 〈0.689 4, 0.157 5〉 |
M6 | 〈0.40, 0.424 3〉 | 〈0.186 8, 0.704 0〉 | 〈0.40, 0.40〉 | 〈0.736 8, 0.141 4〉 |
1 | KONG D P , CHANG T Q , WANG Q D , et al. A threat assessment method of group targets based on interval-valued intuitioni-stic fuzzy multi-attribute group decision-making[J]. Applied Soft Computing, 2018, 67 (6): 350- 369. |
2 | DENG Y . A threat assessment model under uncertain environment[J]. Mathematical Problems in Engineering, 2015, 878024. |
3 |
付涛, 王军. 防空系统中空中目标威胁评估方法研究[J]. 指挥控制与仿真, 2016, 38 (3): 63- 69.
doi: 10.3969/j.issn.1673-3819.2016.03.013 |
FU T , WANG J . Threat assessment of aerial targets in air-defense[J]. Command Control & Simulation, 2016, 38 (3): 63- 69.
doi: 10.3969/j.issn.1673-3819.2016.03.013 |
|
4 |
季傲, 姜礼平, 吴强. 航母编队协同防空作战目标威胁评估[J]. 兵工自动化, 2016, 35 (5): 56- 58.
doi: 10.7690/bgzdh.2016.05.015 |
JI A , JING L P , WU Q . Target threat assessment for aircraft carrier formation cooperative air defense[J]. Ordnance Industry Automation, 2016, 35 (5): 56- 58.
doi: 10.7690/bgzdh.2016.05.015 |
|
5 | 李卫忠, 李志鹏, 江洋, 等. 混沌海豚群优化灰色神经网络的空中目标威胁评估[J]. 控制与决策, 2018, 33 (11): 80- 86. |
LI W Z , LI Z P , JIANG Y , et al. Air-targets threat assessment using grey neural network optimized by chaotic dolphin swarm algorithm[J]. Control and Decision, 2018, 33 (11): 80- 86. | |
6 | 王晓玲, 戴林瀚, 吕鹏, 等. 基于DSR-可拓云的渗流安全综合评价研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52 (1): 52- 61. |
WANG X L , DAI L H , LYU P , et al. Study on comprehensive evaluation model of seepage safety based on DSR-extension cloud[J]. Journal of Tianjin University(Science and Technology), 2019, 52 (1): 52- 61. | |
7 | 高杨, 李东生, 王骁. 基于区间数排序的目标识别系统威胁评估方法[J]. 探测与控制学报, 2015, 37 (6): 82- 86. |
GAO Y , LI D S , WANG X . Target threat assessment method based on intervals order[J]. Journal of Detection & Control, 2015, 37 (6): 82- 86. | |
8 |
XU Y J , WANG Y C , MIU X D . Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets[J]. Journal of Systems Engineering and Electronics, 2012, 23 (6): 891- 897.
doi: 10.1109/JSEE.2012.00109 |
9 |
SU X Z , CHEN M Y , XIA G P . An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making[J]. Expert System with Applications, 2011, 38, 15286- 15295.
doi: 10.1016/j.eswa.2011.06.022 |
10 | 张延风, 刘建书, 张士峰. 基于层次分析法和熵值法的目标多属性威胁评估[J]. 弹箭与制导学报, 2019, 39 (2): 163- 165. |
ZHANG Y F , LIU J S , ZHANG S F . A multi-attribute threat assessment method based on analytical hierarchy process and entropy method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39 (2): 163- 165. | |
11 | CHICLANA F . Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy prefe-rence relations[J]. Fuzzy Sets & Systems, 2001, 122 (2): 277- 291. |
12 |
YIN G Y , ZHOU S L , ZHANG W G . A threat assessment algorithm based on AHP and principal components analysis[J]. Procedia Engineering, 2011, 15, 4590- 4596.
doi: 10.1016/j.proeng.2011.08.862 |
13 |
徐克虎, 张明双, 李灵之. 基于区间变权灰色关联法的集群目标威胁评估[J]. 电光与控制, 2019, 26 (12): 6- 11.
doi: 10.3969/j.issn.1671-637X.2019.12.002 |
XU K H , ZHANG M S , LI L Z . Cluster target threat assessment based on interval variable weight grey correlation method[J]. Electronics Optics & Control, 2019, 26 (12): 6- 11.
doi: 10.3969/j.issn.1671-637X.2019.12.002 |
|
14 | 温包谦, 王涛. 弹炮结合武器系统指挥控制模型研究[C]//2019中国系统仿真与虚拟现实技术高层论坛, 2019: 232-236. |
WEN B Q, WANG T. Research on command and control model of integrate missile and gun weapon system[C]//Proc. of the China System Simulation and Virtual Reality Technology High Level Forum, 2019: 232-236. | |
15 |
周弘波, 张金成. 基于组合权重的灰色目标威胁评估[J]. 火力与指挥控制, 2018, 43 (10): 143- 146.
doi: 10.3969/j.issn.1002-0640.2018.10.028 |
ZHOU H B , ZHANG J C . Evaluation of target threat based on combinational weigh and grey correlation[J]. Fire Control & Command Control, 2018, 43 (10): 143- 146.
doi: 10.3969/j.issn.1002-0640.2018.10.028 |
|
16 | FREDRIK J, GORAN F. A Bayesian network approach to threat evaluation with application to an air defense scenario[C]//Proc. of the 11th International Conference on Information Fusion, 2008. |
17 | WANG Y, SUN Y, LI J Y, et al. Air defense threat assessment based on dynamic Bayesian network[C]//Proc. of the IEEE International Conference on Systems and Informatics, 2012: 721-724. |
18 | WANG G J , DUAN Y . TOPSIS approach for multi-attribute decision making problems based on n-intuitionistic polygonal fuzzy sets description[J]. Computers & Industrial Engineering, 2018, 124, 573- 581. |
19 |
SONG W , MIN G X , WU Z , et al. Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS[J]. International Journal of Computer Integrated Manufacturing, 2013, 26 (12): 1172- 1186.
doi: 10.1080/0951192X.2013.785027 |
20 | 奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46 (2): 388- 397. |
XI Z F , XU A , KOU Y X , et al. Air combat threat assessment based on improved GRA-TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (2): 388- 397. | |
21 | 张堃, 刘培培, 张建东, 等. 基于DVIKOR的空战多目标威胁评估[J]. 航空兵器, 2018, (2): 3- 8. |
ZHANG K , LIU P P , ZHANG J D , et al. Multi-target threat assessment in air combat based on DVIKOR[J]. Aero Weaponry, 2018, (2): 3- 8. | |
22 |
张明双, 徐克虎, 李灵之. 基于直觉模糊集和VIKOR法的多目标威胁评估[J]. 兵器装备工程学报, 2019, 40 (6): 62- 67.
doi: 10.11809/bqzbgcxb2019.06.014 |
ZHANG M S , XU K H , LI L Z . Multi-target threat assessment based on intuitionistic fuzzy set and VIKOR[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (6): 62- 67.
doi: 10.11809/bqzbgcxb2019.06.014 |
|
23 | CHEN D F , FENG Y , LIU Y X . Threat assessment for air defense operations based on intuitionistic fuzzy logic[J]. Procedia Engineering, 2012, 29 (4): 3302- 3306. |
24 | 孔德鹏, 常天庆, 郝娜, 等. 地面作战目标威胁评估多属性指标处理方法[J]. 自动化学报, 2021, 47 (1): 161- 172. |
KONG D P , CHANG T Q , HAO N , et al. Multi-attribute index processing method of target threat assessment in ground combat[J]. Acta Automatica Sinica, 2021, 47 (1): 161- 172. | |
25 |
徐好, 吴琳拥, 毛谨. 低空防御中目标威胁评估和火力分配技术[J]. 指挥控制与仿真, 2019, 41 (5): 39- 42.
doi: 10.3969/j.issn.1673-3819.2019.05.009 |
XU H , WU L Y , MAO J . Target threat assessment and fire allocation technology in low-altitude air[J]. Command Control & Simulation, 2019, 41 (5): 39- 42.
doi: 10.3969/j.issn.1673-3819.2019.05.009 |
|
26 | ASIM T , SEROL B . Weapon target assignment with combinatorial optimization techniques[J]. International Journal of Advanced Research in Artificial Intelligence, 2013, 2 (7): 39- 50. |
27 | 张堃, 王雪, 张才坤, 等. 基于IFE动态直觉模糊法的空战目标威胁评估[J]. 系统工程与电子技术, 2014, 36 (4): 697- 701. |
ZHANG K , WANG X , ZHANG C K , et al. Evaluating and sequencing of air target threat based on IFE and dynamic intui-tionistic fuzzy sets[J]. Systems Engineering and Electronics, 2014, 36 (4): 697- 701. | |
28 | CHEN S M , CHENG S H , LAN T C . Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values[J]. Information Sciences, 2016, 367 (11): 279- 295. |
29 |
杜鹏枭, 卢盈齐. 基于惩罚与激励变权和TOPSIS的空中目标威胁评估[J]. 军械工程学院学报, 2017, 29 (3): 59- 63.
doi: 10.3969/j.issn.1008-2956.2017.03.011 |
DU P X , LU Y Q . Air target threat evaluation based on punish- ment and encouragement variable weights and TOPSIS[J]. Journal of Ordnance Engineering College, 2017, 29 (3): 59- 63.
doi: 10.3969/j.issn.1008-2956.2017.03.011 |
|
30 |
巴宏欣, 王俊, 杨颜靖. 基于变权灰色关联法的高超声速目标威胁评估[J]. 火力与指挥控制, 2016, 41 (11): 21- 25.
doi: 10.3969/j.issn.1002-0640.2016.11.005 |
BA H X , WANG J , YANG Y J . Hypersonic target threat assessment based on method of variable weight grey incidence[J]. Fire Control & Command Control, 2016, 41 (11): 21- 25.
doi: 10.3969/j.issn.1002-0640.2016.11.005 |
|
31 | LI D Q , HAO F L . Weights transferring effect of state variable weight vector[J]. System Engineering-Theory & Practice, 2009, 29 (6): 127- 131. |
32 |
YAO R J , MA G W . Tendering evaluation method of hydraulic projects based on variable weight[J]. Procedia Engineering, 2012, 31, 868- 873.
doi: 10.1016/j.proeng.2012.01.1114 |
33 | 杨罗章, 胡生亮, 冯士民. 基于Entropy-TOPSIS方法的目标威胁动态评估与仿真[J]. 兵工自动化, 2020, 39 (3): 53- 56. |
YANG L Z , HU S L , FENG S M . Dynamic evaluation and simulation of targets threat based on entropy and TOPSIS method[J]. Ordnance Industry Automation, 2020, 39 (3): 53- 56. | |
34 | MARDANI A , ZAVADSKAS E K , GOVINDAN K , et al. VIKOR technique: a systematic review of the state of the art literature on methodologies and applications[J]. Sustainability, 2016, |
35 | SINGH S , OLUGU E U , MUSA S N , et al. Strategy selection for sustainable manufacturing with integrated AHP-VIKOR method under interval-valued fuzzy environment[J]. International Journal of Advanced Manufacturing Technology, 2016, 84 (4): 547- 563. |
[1] | 徐鑫宇, 万路军, 陈平, 戴江斌, 高志周. 防御性制空截击中警戒巡逻空域规划建模[J]. 系统工程与电子技术, 2022, 44(5): 1589-1599. |
[2] | 卢盈齐, 范成礼, 付强, 朱晓雯, 李威. 基于改进IFRS相似度和信息熵的反导作战目标威胁评估[J]. 系统工程与电子技术, 2022, 44(4): 1230-1238. |
[3] | 于博文, 于琳, 吕明, 张捷. 基于M-ANFIS-PNN的目标威胁评估模型[J]. 系统工程与电子技术, 2022, 44(10): 3155-3163. |
[4] | 孙云柯, 方志耕, 陈顶. 基于动态灰色主成分分析的多时刻威胁评估[J]. 系统工程与电子技术, 2021, 43(3): 740-746. |
[5] | 钟晓芳, 兰红娟, 江文奇. 共识驱动的区间直觉模糊型多准则群体决策信息融合模型[J]. 系统工程与电子技术, 2020, 42(7): 1558-1566. |
[6] | 李岩, 陈云翔, 罗承昆, 蔡忠义. 基于概率犹豫-直觉模糊熵和证据推理的多属性决策方法[J]. 系统工程与电子技术, 2020, 42(5): 1116-1123. |
[7] | 陶希闻, 江文奇. 基于调整成本的三阶段区间直觉模糊型多准则群体共识改进模型[J]. 系统工程与电子技术, 2020, 42(11): 2570-2580. |
[8] | 孟光磊, 周铭哲, 朴海音, 张慧敏. 基于协同战术识别的双机编队威胁评估方法[J]. 系统工程与电子技术, 2020, 42(10): 2285-2293. |
[9] | 孙海文, 谢晓方, 孙涛, 张龙杰. 小样本数据缺失状态下DBN舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2019, 41(6): 1300-1308. |
[10] | 孙超姣, 陈勇, 景博, 李娟. 基于权值优化的多操纵面抗饱和控制分配策略[J]. 系统工程与电子技术, 2019, 41(6): 1351-1357. |
[11] | 张壮, 李琳琳, 魏振华, 余宏峰. 基于变权投影灰靶的指控系统动态效能评估[J]. 系统工程与电子技术, 2019, 41(4): 801-809. |
[12] | 高杨, 李东生. 变权区间数Heronian算子下集群态势觉察一致性评估[J]. 系统工程与电子技术, 2019, 41(1): 89-95. |
[13] | 孙庆鹏, 李战武, 常一哲. 基于威力势场的多机种威胁评估方法[J]. 系统工程与电子技术, 2018, 40(9): 1993-1999. |
[14] | 徐西蒙, 杨任农, 符颖, 赵雨. 基于ELM_AdaBoost强预测器的空战目标威胁评估[J]. 系统工程与电子技术, 2018, 40(8): 1760-1768. |
[15] | 江文奇, 祁晨晨, 王晨晨. 融合记分函数的直觉模糊集相似度性质再定义与模型设计[J]. 系统工程与电子技术, 2018, 40(7): 1521-1529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||