系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 117-126.doi: 10.12305/j.issn.1001-506X.2022.01.16

• 传感器与信号处理 • 上一篇    下一篇

基于外观相似性更新的相关滤波跟踪算法

方澄*, 路稳, 姬菁颖, 宋玉蒙, 梁斐菲, 罗志伟   

  1. 中国民航大学电子信息与自动化学院, 天津 300300
  • 收稿日期:2020-11-17 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 方澄
  • 作者简介:方澄(1980—), 男, 讲师, 博士, 主要研究方向为数据挖掘、大数据、计算机视觉|路稳(1995—), 女, 硕士研究生, 主要研究方向为计算机视觉、目标跟踪|姬菁颖(1996—), 女, 硕士研究生, 主要研究方向为计算机视觉、目标跟踪|宋玉蒙(1998—), 男, 硕士研究生, 主要研究方向为计算机视觉|梁斐菲(1996—), 女, 硕士研究生, 主要研究方向为计算机视觉|罗志伟(1997—), 男, 硕士研究生, 主要研究方向为计算机视觉
  • 基金资助:
    中国民航大学科研启动基金(2017QD05S);中央高校基本科研业务费专项资金(3122018C005)

Correlation filter-tracking algorithm based on appearance similarity update

Cheng FANG*, Wen LU, Jingying JI, Yumeng SONG, Feifei LIANG, Zhiwei LUO   

  1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
  • Received:2020-11-17 Online:2022-01-01 Published:2022-01-19
  • Contact: Cheng FANG

摘要:

针对核相关滤波(kernel correlation filter, KCF)算法在目标旋转、形变等复杂环境中容易产生模型漂移的问题, 提出了一种基于KCF自适应更新的目标跟踪算法(adaptive updating target tracking algorithm based on KCF, AUKCF)。该方法首先对响应进行多峰判断, 然后针对多峰现象使用显著性检测进行目标的重新定位, 减少模型漂移。为了保证显著性检测的准确性, 使用重检测手段进行显著性检测结果的校准。最后, 使用斯皮尔曼相关性判断目标是否存在遮挡、严重形变等问题, 并根据斯皮尔曼相关性结果决定是否进行模型的更新, 减少模型退化, 提高更新效率。在目标跟踪数据集OTB2015上进行测试, 实验结果表明, AUKCF相比KCF算法的精度和成功率分别提高14%和11.8%, 并且AUKCF算法比目前流行的深度学习算法更加简洁, 对设备性能要求更低, 算法实时性可以达到93.84 fps。

关键词: 目标跟踪, 显著性检测, 斯皮尔曼相关性, 模型退化, 模型更新

Abstract:

To solve the problem of kernel correlation filter (KCF) algorithm, which is prone to model drift in complicated environments, an algorithm using adaptive updating target tracking algorithm based on KCF(AUKCF) is proposed. This algorithm firstly makes multi-peak judgment on the response, then uses the saliency detection to relocate the target for the multi-peak phenomenon to reduce the model drift. To ensure the accuracy of the saliency detection, the redetection method is applied to calibrate the saliency detection result. Finally, Spearman correlation, which reduces model degradation and improves update efficiency is used to determine whether the target has problems such as occlusion and serious deformation, and it is determined whether to update the model according to the results of Spearman's correlation. Tested on the OTB2015 benchmark, the experimental results show that the accuracy and success rate of the AUKCF and KCF algorithms are increased by 14% and 11.8%, respectively. Compared with the current deep learning algorithm, the AUKCF algorithm has a simpler model and lower requirements for equipment, the real-time performance can reach 93.84 fps.

Key words: target tracking, saliency detection, Spearman correlation, model degradation, model update

中图分类号: