1 |
范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38 (12): 3261- 3268.
|
|
FAN X M , HU S L , HE J B . Feature extraction and selection of full polarization HRRP in target recognition process of maritime surveillance radar[J]. Jounal of Electronics & Information Technology, 2016, 38 (12): 3261- 3268.
|
2 |
张玉玺, 王晓丹, 姚旭, 等. 基于复数全极化HRRP的雷达目标识别[J]. 系统工程与电子技术, 2014, 36 (2): 260- 265.
|
|
ZHANG Y X , WANG X D , YAO X , et al. Radar target recognition based on complex fully polarimetric HRRP[J]. Systems Engineering and Electronics, 2014, 36 (2): 260- 265.
|
3 |
宋新景. 基于极化特征的雷达目标识别技术[J]. 雷达科学与技术, 2014, 14 (1): 39- 53.
doi: 10.3969/j.issn.1672-2337.2014.01.007
|
|
SONG X J . Radar target recognition based on polarization feature[J]. Radar Science and Technology, 2014, 14 (1): 39- 53.
doi: 10.3969/j.issn.1672-2337.2014.01.007
|
4 |
赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5 (6): 620- 638.
|
|
ZHAO C L , WANG Y L , YANG Y L , et al. Review of radar selection information acquisition and polarimetric signal processing techniques[J]. Journal of Radar, 2016, 5 (6): 620- 638.
|
5 |
陈曦, 钟雪莲. 多极化SAR图像的智能识别应用研究[J]. 空军预警学院学报, 2019, 33 (1): 20- 24.
doi: 10.3969/j.issn.2095-5839.2019.01.005
|
|
CHEN X , ZHONG X L . Research on intelligent recognition of multipolarization SAR image[J]. Journal of Air Force Early Warning Academy, 2019, 33 (1): 20- 24.
doi: 10.3969/j.issn.2095-5839.2019.01.005
|
6 |
张胜峰, 朱新国, 马超. 基于Cloude分解的宽带双极化特征提取分析[J]. 电子测量技术, 2018, 41 (24): 99- 102.
|
|
ZHANG S F , ZHU X G , MA C . Wideband dual-polarization feature extraction analysis based on Cloude decompo sition[J]. Jounal of Electronic Measurement Technology, 2018, 41 (24): 99- 102.
|
7 |
王宇, 禹卫东, 刘秀清. 基于极化特征参数和极化干涉最优参数的改进四元素分解方法[J]. 电子与信息学报, 2019, 41 (12): 2881- 2888.
doi: 10.11999/JEIT190108
|
|
WANG Y , YU W D , LIU X Q . An improved four-component decomposition method based on the characteristic of polarization and the optimal parameters of PolInSAR[J]. Jounal of Electronics & Information Technology, 2019, 41 (12): 2881- 2888.
doi: 10.11999/JEIT190108
|
8 |
张胜峰, 马超, 朱新国, 等. 弹道目标宽带极化特征提取分析[J]. 现代雷达, 2020, 42 (1): 45- 50.
|
|
ZHANG S F , MA C , ZHU X G , et al. Wideband polarization feature extraction of ballistic targets[J]. Modern Radar, 2020, 42 (1): 45- 50.
|
9 |
魏志强, 毕海霞. 基于聚类识别的极化SAR图像分类[J]. 电子与信息学报, 2018, 40 (12): 2795- 2803.
|
|
WEI Z Q , BI H X . PolSAR image classification based on discriminative clustering[J]. Jounal of Electronics & Information Technology, 2018, 40 (12): 2795- 2803.
|
10 |
盖晴晴, 韩玉兵, 南华, 等. 基于深度卷积神经网络的极化雷达目标识别[J]. 电波科学学报, 2018, 33 (5): 575- 582.
|
|
GAI Q Q , HAN Y B , NAN H , et al. Polarimetric radar target recognition based on depth convolution neural network[J]. Jounal of Radio Science, 2018, 33 (5): 575- 582.
|
11 |
文伟, 曹雪菲, 张学峰, 等. 一种基于多极化散射机理的极化SAR图像舰船目标检测方法[J]. 电子与信息学报, 2017, 39 (1): 103- 109.
|
|
WEN W , CAO X F , ZHANG X F , et al. PolSAR ship detection method based on multiple polarimetric scattering mechanisms[J]. Jounal of Electronics & Information Technology, 2017, 39 (1): 103- 109.
|
12 |
HE S H, SUN W F, GUO G R. A method of range-polarization reconstructing of radar target and its application in target recognition[C]//Proc. of the National Aerospace and Electronics Conference, 1994: 93-96.
|
13 |
肖怀铁. 宽带极化毫米波雷达目标特征信号测量与识别算法研究[D]. 长沙: 国防科技大学, 2000.
|
|
XIAO H T. Study on measurement and recognition algorithm of wide-band polarized millimeter wave radar target characteristic signal[D]. Changsha: National University of Defense Technology, 2000.
|
14 |
CAMERON W , YOUSSEF N , LEUNG L . Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Trans.on Geoscience Remote Sensing, 1996, 34 (3): 793- 803.
doi: 10.1109/36.499784
|
15 |
KROGAGER E . New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26 (18): 1525- 1527.
doi: 10.1049/el:19900979
|
16 |
CLOUDE S , POTTIER E . Review of target decomposition theorems in radar polarimetry[J]. IEEE Trans.on Geoscience and Remote Sensing, 1996, 34 (2): 498- 518.
doi: 10.1109/36.485127
|
17 |
CLOUDE S , POTTIER E . Concept of polarization entropy in optical scattering[J]. Optical Engineering, 1995, 34 (6): 1599- 1610.
doi: 10.1117/12.202062
|
18 |
BERIZZI F, MARTORELLA M, CAPRIA A, et al. H/α polarimetric features for man-made target classification[C]//Proc. of the IEEE Radar Conference, 2008.
|
19 |
张玉玺, 王晓丹, 姚旭, 等. 基于多尺度H/A/α分解的全极化HRRP特征提取[J]. 控制与决策, 2014, 29 (1): 71- 76.
|
|
ZHANG Y X , WANG X D , YAO X , et al. Feature extraction of fully polarimetric HRRP based on multi-scale H/A/α decomposition[J]. Control and Decision, 2014, 29 (1): 71- 76.
|
20 |
郭晨, 简涛, 徐从安, 等. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别[J]. 电子与信息学报, 2019, 41 (6): 1302- 1309.
|
|
GUO C , JIAN T , XU C A , et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neur al network[J]. Journal of Electronics & Information Technology, 2019, 41 (6): 1302- 1309.
|
21 |
王容川, 庄志洪, 王宏波, 等. 基于卷积神经网络的雷达目标HRRP分类识别方法[J]. 现代雷达, 2019, 41 (5): 33- 38.
|
|
WANG R C , ZHUANG Z H , WANG H B , et al. HRRP classification and recognition method of radar target based on convolutional neural network[J]. Modern Radar, 2019, 41 (5): 33- 38.
|
22 |
刘兴旺. 一种多层预训练卷积神经网络在图像识别中的应用[D]. 武汉: 中南民族大学, 2018.
|
|
LIU X W. The application of a multi-layers pre-training convolutional neural network in image recognition[D]. Wuhan: South-Central University for Nationalities, 2018.
|
23 |
付哲泉, 李尚生, 李相平, 等. 基于高效可扩展改进残差结构神经网络的舰船目标识别技术[J]. 电子与信息学报, 2020, 42 (12): 3005- 3012.
doi: 10.11999/JEIT190913
|
|
FU Z Q , LI S S , LI X P , et al. Ship target recognition based on highly efficient scalable improved residual structure neural network[J]. Journal of Electronics & Information Technology, 2020, 42 (12): 3005- 3012.
doi: 10.11999/JEIT190913
|
24 |
YANG J Y , PENG Y N , LIN S M . Similarity between two scattering matrices[J]. Electronics Letters, 2001, 37 (3): 193- 194.
doi: 10.1049/el:20010104
|
25 |
FU Z Q , LI S S , LI X P , et al. A neural network with convolutional module and residual structure for radar target recognition based on high-resolution range profile[J]. Sensors, 2020, 20 (3): 586.
doi: 10.3390/s20030586
|