1 |
BRENNAN L E , REED I S . Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 237- 252.
|
2 |
WANG H , CAI L J . On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 660- 670.
doi: 10.1109/7.303737
|
3 |
KLEMM R . Space-time adaptive processing-principles and applications[M]. London: the Institute of Electrical Engineers, 2002: 101- 104.
|
4 |
廖桂生, 保铮, 张玉洪, 等. 阵元幅相误差对AEW雷达二维杂波谱的影响[J]. 电子学报, 1994, 22 (3): 116- 118.
doi: 10.3321/j.issn:0372-2112.1994.03.022
|
|
LIAO G S , BAO Z , ZHANG Y H , et al. On 2-D clutter spectra for AEW radars with imperfect arrays[J]. Acta Electronica Sinica, 1994, 22 (3): 116- 118.
doi: 10.3321/j.issn:0372-2112.1994.03.022
|
5 |
保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21 (9): 1- 7.
doi: 10.3321/j.issn:0372-2112.1993.09.001
|
|
BAO Z , LIAO G S , WU R B , et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radar[J]. Acta Electronica Sinica, 1993, 21 (9): 1- 7.
doi: 10.3321/j.issn:0372-2112.1993.09.001
|
6 |
MELVIN W L . A stap overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19 (1): 19- 35.
doi: 10.1109/MAES.2004.1263229
|
7 |
周延, 冯大政, 朱国辉, 等. 空域数据分解的两级降维自适应处理方法[J]. 电子与信息学报, 2015, 37 (2): 334- 338.
|
|
ZHOU Y , FENG D Z , ZHU G H , et al. Two-stage reduced-dimension adaptive processing method based on the spatial data decomposition[J]. Journal of Electronics & Information Technology, 2015, 37 (2): 334- 338.
|
8 |
SHEN M W , ZHANG Q , LI J F , et al. Improved application of space-time adaptive monopulse to joint domain localized STAP[J]. Remote Sensing Letters, 2019, 10 (6): 536- 544.
doi: 10.1080/2150704X.2019.1577998
|
9 |
ZHOU Y , WANG L , CHEN X X , et al. An improving EFA for clutter suppression by using the persymmetric covariance matrix estimation[J]. Circuits, Systems, and Signal Processing, 2018, 37 (2): 4136- 4149.
|
10 |
ZHOU Y , FENG D Z , ZHU G H , et al. The post-Doppler adaptive processing method based on the spatial domain reconstruction[J]. Signal Processing, 2015, 9 (2): 89- 93.
|
11 |
DEGURSE J F , SAVY L , MARCOS S . Reduced-rank STAP for target detection in heterogeneous environment[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1153- 1162.
doi: 10.1109/TAES.2014.120414
|
12 |
WANG Y L , LIU W J , XIE W C , et al. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57 (8): 082310.
|
13 |
LIU W J , XIE W C , LI R F , et al. Adaptive detectors in the Krylov subspace[J]. Science China Information Sciences, 2014, 57 (10): 102310.
|
14 |
WU Q , ZHANG Y M , MOENESS G A , et al. Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse Bayesian learning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (2): 944- 957.
doi: 10.1109/TGRS.2015.2470518
|
15 |
HAN S D , FAN C Y , HUANG X T . A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2): 213- 217.
doi: 10.1109/LGRS.2016.2635104
|
16 |
GUO Y D , LIAO G S , FENG W K . Sparse representation based algorithm for airborne radar in beam-space post-Doppler reduced-dimension space-time adaptive processing[J]. IEEE Access, 2017, 5, 5896- 5903.
doi: 10.1109/ACCESS.2017.2689325
|
17 |
DUAN K Q , WANG Z T , XIE W C , et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11 (5): 544- 553.
doi: 10.1049/iet-spr.2016.0183
|
18 |
SU Y Y , WANG T , TAO F Y , et al. A gird-less total variation minimization-based space-time adaptive processing for airborne radar[J]. IEEE Access, 2020, 8, 29334- 29343.
doi: 10.1109/ACCESS.2020.2972366
|
19 |
LI Z Y , WANG T . ADMM-based low-complexity off-grid space-time adaptive processing methods[J]. IEEE Access, 2020, 8, 206646- 206658.
doi: 10.1109/ACCESS.2020.3037652
|
20 |
YUAN H D , XU H , DUAN K Q , et al. Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar[J]. IEEE Access, 2018, 6, 47296- 47307.
doi: 10.1109/ACCESS.2018.2866497
|
21 |
DUAN K Q , YUAN H D , XU H , et al. Sparsity-based non-stationary clutter suppression technique for airborne radar[J]. IEEE Access, 2018, 6, 56162- 56169.
doi: 10.1109/ACCESS.2018.2873021
|
22 |
LI Z H , ZHANG Y S , HE X Y , et al. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (12): 1862- 1866.
doi: 10.1109/LGRS.2018.2865536
|
23 |
FENG W K , GUO Y D , ZHANG Y S , et al. Airborne radar space time adaptive processing based on atomic norm minimization[J]. Signal Processing, 2018, 148, 31- 40.
doi: 10.1016/j.sigpro.2018.02.008
|
24 |
SUN G H , HE Z S , TONG J , et al. Knowledge-aided covariance matrix estimation via Kronecker product expansions for airborne STAP[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (4): 527- 531.
doi: 10.1109/LGRS.2018.2799329
|
25 |
谷泓, 赵永波, 张守宏. 一种基于数字综合算法的MTD滤波器设计方法[J]. 航空计算技术, 2002, 32 (2): 58- 61.
doi: 10.3969/j.issn.1671-654X.2002.02.018
|
|
GU H , ZHAO Y B , ZHANG S H . A design method of MTD filters based on the numerical synthesis algorithm[J]. Aeronautical Computer Technical, 2002, 32 (2): 58- 61.
doi: 10.3969/j.issn.1671-654X.2002.02.018
|
26 |
BESSON O , STOICA P . Decoupled estimation of DOA and angular spread for spatially distribution sources[J]. IEEE Trans.on Signal Processing, 2000, 48 (7): 1872- 1882.
doi: 10.1109/78.847774
|
27 |
YANG Z , XIE L H , ZHANG C S . A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Trans.on Signal Processing, 2014, 62 (19): 4959- 4973.
doi: 10.1109/TSP.2014.2339792
|
28 |
GRANT M, BOYD S. CVX: matlab software for disciplined convex programming[EB/OL]. [2020-10-15]. http://stanford.edu/~boyd/cvx.
|
29 |
TAL A B , NEMIROVSKI A . Lectures on modern convex optimization: analysis, algorithms, and engineering applications[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2001.
|