系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 76-85.doi: 10.12305/j.issn.1001-506X.2022.01.11

• 传感器与信号处理 • 上一篇    下一篇

基于GM-PHD滤波的空间邻近多目标跟踪算法

龚阳*, 崔琛   

  1. 国防科技大学电子对抗学院, 安徽 合肥 230037
  • 收稿日期:2020-01-22 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 龚阳
  • 作者简介:龚阳(1992—), 男, 博士研究生, 主要研究方向为雷达信号处理、多目标跟踪|崔琛(1962—), 男, 教授, 博士研究生导师, 主要研究方向为雷达信号处理及雷达对抗技术

Multi-target tracking algorithm based on GM-PHD filter for spatially close targets

Yang GONG*, Chen CUI   

  1. Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China
  • Received:2020-01-22 Online:2022-01-01 Published:2022-01-19
  • Contact: Yang GONG

摘要:

针对传统的高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GM-PHD)滤波器在跟踪空间邻近目标时存在错误估计、虚警和漏警问题, 本文提出了一种改进算法。首先, 提出一种权值重分配方案, 对目标的高斯分量权值进行重分配, 以提高目标邻近时GM-PHD滤波器的跟踪精度; 然后, 利用目标航迹的连续性, 对于当前时刻丢失的目标, 利用上一时刻的目标预测值进行修正以减少漏警情形; 最后, 充分利用多帧已估目标状态对估计目标进行分类, 检测估计中存在的虚警并对其进行删除。仿真结果表明, 与现有算法相比, 本文改进算法具有更优的跟踪性能。

关键词: 概率假设密度, 空间邻近目标, 权值重分配, 漏警修正, 虚警检测

Abstract:

Considering the problem of wrong estimate, missing alarm and false alarm when the Gaussian mixture probability hypothesis density (GM-PHD) filter is used to track targets which are spatially close, an improved algorithm is proposed. Firstly, by arranging the weights of Gaussian components assigned to each target, a weight rearrangement scheme is proposed to improve the tracking accuracy of the GM-PHD filter when targets are spatially close. Then, based on continuous property of the target trajectory, the missed target at the current time is refined by the predicted value at the last time to reduce the missing alarm. Finally, the estimated targets are classified by making full use of the multi-frame estimated target states, and the false alarm is detected and deleted. Simulation results demonstrate that the improved algorithm has a better tracking performance compared with the existing algorithms.

Key words: probability hypothesis density (PHD), spatially close target, weight rearrangement, missing alarm refinement, false alarm detection

中图分类号: