1 |
LIN C W, TIAN R, BAO Q B, et al. Coherent integration method of frequency agile radar for target detection[C]//Proc. of the 6th Asia-Pacific Conference on Antennas and Propagation, 2017.
|
2 |
XU W, HASSIBI B. Efficient compressive sensing with deterministic guarantees using expander graphs[C]//Proc. of the IEEE Information Theory Workshop, 2007: 414-419.
|
3 |
INDYK P. Sparse recovery using sparse random matrices[M]//Latin: Theoretical Informatics, 2010: 157-157,
|
4 |
ELDAR Y C , KUTYNIOK G . Compressed sensing: theory and applications[M]. Cambridge: Cambridge University Press, 2012.
|
5 |
WANG L C , HUANG T , LIU Y H , et al. Randomized stepped frequency radars exploiting block sparsity of extended targets: a theoretical analysis[J]. IEEE Trans.on Signal Processing, 2021, 382 (44): 1927- 1938.
|
6 |
PARK G , HONG S . Construction of 1-bit transmit-signal vectors for downlink MU-MISO systems with PSK signaling[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (8): 8270- 8274.
doi: 10.1109/TVT.2019.2926486
|
7 |
YANIV P , ROMAN V . One-bit compressed sensing by linear programming[J]. Communications on Pure and Applied Mathematics, 2013, 66 (8): 1275- 1297.
doi: 10.1002/cpa.21442
|
8 |
MEHRDAD Y, THOMAS B, DAVIES M. Quantized sparse approximation with iterative thresholding for audio coding[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1988.
|
9 |
JACQUES L , LASKA J N , BOUFOUNOS P T , et al. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. IEEE Trans.on Information Theory, 2013, 59 (4): 2082- 2102.
doi: 10.1109/TIT.2012.2234823
|
10 |
BOUFOUNOS P T. Greedy sparse signal reconstruction from sign measurements[C]//Proc. of the asilomar Conference on Circuits, Systems and Computers, 1997.
|
11 |
LASKA J N , WEN Z , YIN W , et al. Trust, but verify: fast and accurate signal recovery from 1-bit compressive measurements[J]. IEEE Trans.on Signal Processing, 2011, 59 (11): 5289- 5301.
doi: 10.1109/TSP.2011.2162324
|
12 |
PLAN Y , VERSHYNIN R . One-bit compressed sensing by linear programming[J]. Communications on Pure and Applied Mathematics, 2013, 22 (6): 272- 278.
|
13 |
GREGOR K, LECUN Y. Learning fast approximations of sparse coding[C]//Proc. of the International Conference on International Conference on Machine Learning, 2010: 399-406.
|
14 |
ZHANG J, GHANEM B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
15 |
BORGERDING M , SCHNITER P , RANGAN S . AMP-Inspired deep networks for sparse linear inverse problems[J]. IEEE Trans.on Signal Processing, 2017, 378 (40): 392- 398.
|
16 |
BORGERDING M, SCHNITER P, Onsager-corrected deep learning for sparse linear inverse problems[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2016: 227-231.
|
17 |
FU R, HUANG T Y, LIU Y Y, et al. Compressed LISTA exploiting toeplitz structure[C]//Proc. of the IEEE Radar Confe-rence, 2019.
|
18 |
LIU J, CHEN X Z, WANG Z K, et al. ALISTA: analytic weights are as good as learned weights in lista[C]//Proc. of the International Conference on Learning Representations, 2019.
|
19 |
WU K, GUO Y, LI Z, et al. Sparse coding with gated learned ISTA[C]//Proc. of the International Conference on Learning Representations, 2020.
|
20 |
ELDAR Y C , KUPPINGER P , BOLCSKEI H . Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Trans.on Signal Processing, 2010, 58 (6): 3042- 3054.
doi: 10.1109/TSP.2010.2044837
|
21 |
BECK A , TEBOULLE M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J Imaging Sciences, 2009, 2 (1): 183- 202.
doi: 10.1137/080716542
|
22 |
DRAGANIC A , OROVIC I , STANKOVIC S . On some common compressive sensing recovery algorithms and applications-review paper[J]. Facta Universitatis-Series: Electronics and Energetics, 2017, 38 (5): 2714- 2723.
|
23 |
AVIAD A, ALONA G, MICHAEL E. Ada-LISTA: learned solvers adaptive to varying models[EQ/BL]. [2021-05-04]https://www.researchgate.net/publication/338789854_Ada-LISTA_Learned_Solvers_Adaptive_to_Varying_Models.
|
24 |
BARANIUK R G , CEVHER V , DUARTE M F , et al. Model-based compressive sensing[J]. IEEE Trans.on Information Theory, 2010, 56 (4): 1982- 2001.
doi: 10.1109/TIT.2010.2040894
|
25 |
LIU C , CHEN S C , XI F F , et al. Block sparse representation and suppression of narrow-band interference signals for quadrature compressive sampling radar[J]. Signal Processing, 2018, 150 (9): 135- 144.
|
26 |
MA Z, LIU Y L, MENG H M, et al. Jointly sparse recovery of multiple snapshots in STAP[C]//Proc. of the IEEE Radar Conference, 2013.
|
27 |
WANG L, LIU Y, MA Z G, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]//Proc. of the IEEE Radar Conference, 2015.
|
28 |
BOUFOUNOS P T, BARANIUK R G. 1-bit compressive sensing[C]//Proc. of the 42nd Annual Conference on Information Sciences and Systems, 2008: 16-21.
|
29 |
ELDAR Y C , KUPPINGER P , BOLCSKEI H . Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Trans.on Signal Processing, 2010, 58 (6): 3042- 3054.
doi: 10.1109/TSP.2010.2044837
|
30 |
BARANIUK R G , CEVHER V , DUARTE M F , et al. Model-based compressive sensing[J]. IEEE Trans.on Information Theory, 2010, 56 (4): 1982- 2001.
doi: 10.1109/TIT.2010.2040894
|
31 |
ELDAR Y C , MISHALI M . Robust recovery of signals from a structured union of subspaces[J]. IEEE Trans.on Information Theory, 2009, 65 (2): 3812- 3824.
|
32 |
ELDAR , YONINA C . Average case analysis of multichannel sparse recovery using convex relaxation[J]. IEEE Trans.on Information Theory, 2010, 66 (3): 3721- 3734.
|
33 |
ELHAMIFAR E , VIDAL R . Block-sparse recovery via convex optimization[J]. IEEE Trans.on Signal Processing, 2012, 60 (8): 4094- 4107.
doi: 10.1109/TSP.2012.2196694
|
34 |
BAJWA W U , DUARTE M F , CALDERBANK R . Conditioning of random block subdictionaries with applications to block-sparse recovery and regression[J]. IEEE Trans.on Information Theory, 2015, 61 (7): 4060- 4079.
doi: 10.1109/TIT.2015.2429632
|
35 |
CANDES E , TAO T . Decoding by linear programming[J]. IEEE Trans.on Information Theory, 2005, 4203- 4215.
|