系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 54-63.doi: 10.12305/j.issn.1001-506X.2022.01.08

• 电子技术 • 上一篇    下一篇

闪烁现象下旋翼目标微动参数估计方法

周毅恒*, 杨军, 夏赛强, 吕明久   

  1. 空军预警学院, 湖北 武汉 430019
  • 收稿日期:2020-08-25 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 周毅恒
  • 作者简介:周毅恒(1996—), 男, 硕士研究生, 主要研究方向为信号处理技术与应用|杨军(1973—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为雷达系统、雷达信号处理与检测|夏赛强(1994—), 男, 硕士研究生, 主要研究方向为目标检测与识别技术|吕明久(1985—), 男, 讲师, 博士, 主要研究方向为目标检测与识别

Estimation method of micro-motion parameters for rotor targets under flashing

Yiheng ZHOU*, Jun YANG, Saiqiang XIA, Mingjiu LYU   

  1. Air Force Early Warning Academy, Wuhan 430019, China
  • Received:2020-08-25 Online:2022-01-01 Published:2022-01-19
  • Contact: Yiheng ZHOU

摘要:

逆Radon变换以其精度高、抗噪性能好的优点常用于微动信号的参数估计, 但是当旋翼类目标微动信号存在闪烁现象时, 该方法失效。针对此问题, 提出一种闪烁现象下的微动参数估计方法。首先, 建立基于线性调频信号的单旋翼直升机雷达回波散射点模型, 分析闪烁现象下回波的微动特性。其次, 通过去噪卷积神经网络(denosing convolutional neural network, DnCNN)结构分别训练去噪网络和去闪烁网络, 消除旋翼目标回波时频图中存在的噪点、闪烁带和零频带, 得到余弦包络特征增强的微动信号时频图。最后, 针对传统逆Radon变换使用遍历法搜索微动参数, 存在运算量较大的问题, 因此采用黄金分割法对搜索过程进行改进, 提升参数估计速度, 最终完成对旋翼目标微动参数的估计。仿真结果验证了所提方法的可行性和有效性。

关键词: 旋翼目标, 微多普勒, 时频分析, 深度学习, 逆Radon变换, 黄金分割法, 参数估计

Abstract:

Inverse Radon transform is often used to estimate the parameters of micro-motion signals because of its high precision and good denoising performance. However, when the micro-motion signal of the rotor target has a flashing phenomenon, the method fails. In order to solve this problem, a method to estimate the micro-motion parameters under the flashing phenomenon is proposed. Firstly, the scattering point model of single-rotor helicopter radar echoes based on linear frequency modulation signals is established, and the micro-motion characteristics of the echoes under the flashing phenomenon are analyzed. Secondly, the denoising network and the deflashing network are trained respectively through the denosing convolutional neural network(DnCNN) structure to eliminate the noise, flashing band and zero band in the time-frequency diagram of rotor target echoes, and the time-frequency diagram of micro-motion signals enhanced by cosine envelope feature is obtained. Finally, the traditional inverse Radon transform uses the ergodic method to search for micro-motion parameters, which has a large amount of calculation. Therefore, the golden section method is adopted to improve the search process and the speed of parameter estimation, and finally complete the estimation of micro-motion parameters of the rotor target. Simulation results verify the feasibility and effectiveness of the proposed method.

Key words: rotor target, micro-Doppler, time-frequency analysis, deep learning, inverse Radon transform, golden section method, parameter estimation

中图分类号: