系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 20-27.doi: 10.12305/j.issn.1001-506X.2022.01.03

• 电子技术 • 上一篇    下一篇

嵌入注意力机制的通信辐射源个体识别方法

曲凌志, 杨俊安*, 刘辉, 黄科举   

  1. 国防科技大学电子对抗学院, 安徽 合肥 230037
  • 收稿日期:2021-01-18 出版日期:2022-01-01 发布日期:2022-01-19
  • 通讯作者: 杨俊安
  • 作者简介:曲凌志(1996—), 男, 硕士研究生, 主要研究方向为信号处理、通信辐射源个体识别|杨俊安(1965—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为信号处理、智能对抗|刘辉(1983—), 男, 讲师, 博士, 主要研究方向通信对抗、智能信息处理|黄科举(1994—), 男, 博士研究生, 主要研究方向为信号处理、通信辐射源个体识别
  • 基金资助:
    安徽省自然科学基金(1908085MF202)

Method for individual identification of communication radiation source embedded in attention mechanism

Lingzhi QU, Junan YANG*, Hui LIU, Keju HUANG   

  1. Institute of Electronic Countermeasures, National University of Defense Technology, Hefei 230037, China
  • Received:2021-01-18 Online:2022-01-01 Published:2022-01-19
  • Contact: Junan YANG

摘要:

复杂电磁环境中, 针对低信噪比条件下现有神经网络识别算法对于通信电台识别准确率不高的问题, 提出一种结合双层注意力机制和残差网络的通信辐射源个体识别方法。首先, 以空间注意模块和通道注意模块构成注意力机制。其次, 在一维残差网络中嵌入双层注意力机制, 提高对关键特征的学习能力。最后, 在实际数据集上验证算法的有效性。实验证明, 相比于残差神经网络算法, 所提方法既能保持模型较好的稳定性又在数据集上有明显的提升效果。

关键词: 低信噪比, 辐射源识别, 注意力机制, 残差学习

Abstract:

In complex electromagnetic environment, a novel communication radiation source identification method combining double-deck attention mechanism and residual network is proposed to solve the problem that the existing neural network identification algorithm is not accurate enough in communication station identification under low signal to noise ratio condition.Firstly, spatial attention module and channel attention module are used to construct the attention mechanism. Secondly, a two-layer attention mechanism is embedded in the one-dimensional residual network to improve the learning ability of key features. Finally, the effectiveness of the algorithm is verified on the actual dataset.Experimental results show that, compared with the residual neural network algorithm, the proposed method not only maintains better stability of the model, but also has a significant improvement effect on the dataset.

Key words: low signal to noise ratio, radiation source identification, attention mechanism, residual learning

中图分类号: