系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 20-27.doi: 10.12305/j.issn.1001-506X.2022.01.03
曲凌志, 杨俊安*, 刘辉, 黄科举
收稿日期:
2021-01-18
出版日期:
2022-01-01
发布日期:
2022-01-19
通讯作者:
杨俊安
作者简介:
曲凌志(1996—), 男, 硕士研究生, 主要研究方向为信号处理、通信辐射源个体识别|杨俊安(1965—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为信号处理、智能对抗|刘辉(1983—), 男, 讲师, 博士, 主要研究方向通信对抗、智能信息处理|黄科举(1994—), 男, 博士研究生, 主要研究方向为信号处理、通信辐射源个体识别
基金资助:
Lingzhi QU, Junan YANG*, Hui LIU, Keju HUANG
Received:
2021-01-18
Online:
2022-01-01
Published:
2022-01-19
Contact:
Junan YANG
摘要:
复杂电磁环境中, 针对低信噪比条件下现有神经网络识别算法对于通信电台识别准确率不高的问题, 提出一种结合双层注意力机制和残差网络的通信辐射源个体识别方法。首先, 以空间注意模块和通道注意模块构成注意力机制。其次, 在一维残差网络中嵌入双层注意力机制, 提高对关键特征的学习能力。最后, 在实际数据集上验证算法的有效性。实验证明, 相比于残差神经网络算法, 所提方法既能保持模型较好的稳定性又在数据集上有明显的提升效果。
中图分类号:
曲凌志, 杨俊安, 刘辉, 黄科举. 嵌入注意力机制的通信辐射源个体识别方法[J]. 系统工程与电子技术, 2022, 44(1): 20-27.
Lingzhi QU, Junan YANG, Hui LIU, Keju HUANG. Method for individual identification of communication radiation source embedded in attention mechanism[J]. Systems Engineering and Electronics, 2022, 44(1): 20-27.
表7
数据集Ⅱ 450 MHz消融性实验的识别准确率"
算法 | 数据集的信噪比设置/dB | |||||||||
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | |
ResNet | 50.74 | 56.06 | 63.40 | 71.38 | 77.76 | 83.19 | 87.65 | 92.34 | 95.10 | 95.95 |
ResNet+CA | 50.85 | 62.34 | 67.23 | 76.59 | 83.40 | 86.27 | 90.21 | 93.72 | 94.78 | 96.70 |
ResNet+SA | 49.89 | 56.27 | 64.57 | 74.14 | 80.85 | 83.40 | 89.04 | 91.27 | 94.89 | 96.48 |
ResNet+AM | 54.26 | 63.30 | 68.29 | 75.11 | 82.77 | 85.32 | 88.29 | 93.62 | 95.43 | 96.17 |
AM+ResNet | 52.23 | 63.82 | 66.91 | 73.61 | 80.42 | 84.68 | 89.04 | 92.65 | 95.31 | 96.48 |
DDAM-ResNet | 54.70 | 64.14 | 69.04 | 78.82 | 83.61 | 85.14 | 91.17 | 94.36 | 96.06 | 97.65 |
表8
数据集Ⅱ 512 MHz消融性实验的识别准确率"
算法 | 数据集的信噪比设置/dB | |||||||||
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | |
ResNet | 41.85 | 49.52 | 53.20 | 57.72 | 67.92 | 71.18 | 78.96 | 85.27 | 91.37 | 95.79 |
ResNet+CA | 45.95 | 49.21 | 57.83 | 61.51 | 69.61 | 76.13 | 81.91 | 90.24 | 94.01 | 96.37 |
ResNet+SA | 42.37 | 46.89 | 47.84 | 54.89 | 66.03 | 76.34 | 82.54 | 86.22 | 92.42 | 96.16 |
ResNet+AM | 44.16 | 51.20 | 56.67 | 63.30 | 68.14 | 76.76 | 85.38 | 88.64 | 92.85 | 95.68 |
AM+ResNet | 44.58 | 50.36 | 55.09 | 61.93 | 66.05 | 71.39 | 81.91 | 86.43 | 92.74 | 96.48 |
DDAM-ResNet | 47.10 | 53.62 | 58.46 | 66.04 | 70.87 | 77.49 | 83.38 | 90.43 | 94.37 | 96.85 |
1 | TALBOT K I , DULEY P R , HYATT M H . Specific emitter identification and verification[J]. Technology Review, 2003, 113. |
2 | BALDINI G, STERI G, GIULIANI R. Identification of wireless devices from their physical layer radio-frequency fingerprints[M]. 4th ed. Encyclopedia of Information Science and Technology. Hershey: IGI Global, 2017. |
3 | HUANG G Q , YUAN Y J , WANG X , et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical & Computer Engineering, 2016, 39 (1): 34- 41. |
4 | PAN Y W, PENG H, LI T Y, et al. High-fidelity symbol synchronization for specific emitter identification[C]//Proc. of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, 2019: 393-398. |
5 |
SHIEH C S , LIN C T . A vector neural network for emitter identification[J]. IEEE Trans.on Antennas and Propagation, 2002, 50 (8): 1120- 1127.
doi: 10.1109/TAP.2002.801387 |
6 | KLEIN R W, TEMPLE M A, MENDENHALL M J, et al. Sensitivity analysis of burst detection and RF fingerprinting classification performance[C]//Proc. of the IEEE International Conference on Communications, 2009. |
7 |
URETEN O , SERINKEN N . Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41 (6): 373- 374.
doi: 10.1049/el:20057769 |
8 | HALL J, BARBEAU M, KRANAKIS E. Radio frequency fingerprinting for intrusion detection in wireless networks[C]//Proc. of the IASTED International Conference on Communications, Internet, and Information Technology, 2005. |
9 |
YUAN Y J , HUANG Z T , WU H , et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. Communications IET, 2014, 8 (13): 2404- 2412.
doi: 10.1049/iet-com.2013.0865 |
10 |
任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38 (12): 160- 168.
doi: 10.11959/j.issn.1000-436x.2017299 |
REN D F , ZHANG T , HAN J , et al. Specific radiation source identification method based on ITD and texture analysis[J]. Journal of Communications, 2017, 38 (12): 160- 168.
doi: 10.11959/j.issn.1000-436x.2017299 |
|
11 | SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2018, 14 (3): 581- 591. |
12 |
LI L , JI H B , JIANG L . Quadratic time-frequency analysis and sequential recognition for specific emitter identification[J]. IET Signal Processing, 2011, 5 (6): 568- 574.
doi: 10.1049/iet-spr.2010.0070 |
13 | HUANG J H , LEI Y K . Communication radio individual recognition based on semi-supervised rectangular network[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (1): 1- 8. |
14 |
ZHANG X D , SHI Y , BAO Z . A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Trans.on Signal Processing, 2001, 49 (9): 1875- 1885.
doi: 10.1109/78.942617 |
15 |
ZHUO F , HUANG Y L , CHEN J . Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance[J]. Procedia Computer Science, 2017, 107, 472- 477.
doi: 10.1016/j.procs.2017.03.092 |
16 | BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]//Proc. of the 14th Annual International Conference on Mobile Computing and Networking, 2008. |
17 | 周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729. |
ZHOU Z W , HUANG G M , WANG X B , et al. Specific radiation source identification based on joint cooperative representation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729. | |
18 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759 |
19 | WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]//Proc. of the IEEE Military Communications Confe-rence, 2019. |
20 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
21 | WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
22 |
WU Q , FERES C , KUZMENKO D , et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54 (24): 1405- 1407.
doi: 10.1049/el.2018.6404 |
23 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
24 | 周东青, 王玉冰, 王星, 等. 基于深度限制波尔兹曼机的辐射源信号识别[J]. 国防科技大学学报, 2016, 38 (6): 136- 141. |
ZHOU D Q , WANG Y B , WANG X , et al. Radiation source signal identification based on depth limit boltzmann machine[J]. Journal of National University of Defense Technology, 2016, 38 (6): 136- 141. | |
25 | 刘高辉, 张晓博. 一种基于深度置信网络的通信辐射源个体识别方法[J]. 电波科学学报, 2020, 35 (3): 395- 403. |
LIU G H , ZHANG X B . An individual identification method of communication radiation source based on deep confidence network[J]. Journal of Radio Science, 2020, 35 (3): 395- 403. | |
26 |
吴子龙, 陈红, 雷迎科, 等. 基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30 |
WU Z L , CHEN H , LEI Y K , et al. Individual identification of communication radiation source based on stack LSTM network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30 |
|
27 | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43 (3): 603- 609. |
CHEN H , YANG J A , LIU H . Individual identification of communication radiation sources based on deep residual adaptive network[J]. Systems Engineering and Electronics, 2021, 43 (3): 603- 609. | |
28 |
BALDINI G , GENTILE C , GIULIANI R , et al. Comparison of techniques for radiometric identification based on deep convolutional neural networks[J]. Electronics Letters, 2019, 55 (2): 90- 92.
doi: 10.1049/el.2018.6229 |
29 | WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
30 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
31 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1026-1034. |
32 | ZHANG J W , WANG F G , DOBRE O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying Scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205. |
[1] | 韩啸, 陈世文, 陈蒙, 杨锦程. 基于互易点学习的LPI信号开集识别[J]. 系统工程与电子技术, 2022, 44(9): 2752-2759. |
[2] | 张立民, 谭凯文, 闫文君, 张聿远. 基于多级跳线残差网络的雷达辐射源识别[J]. 系统工程与电子技术, 2022, 44(7): 2148-2156. |
[3] | 徐平亮, 崔亚奇, 熊伟, 熊振宇, 顾祥岐. 生成式中断航迹接续关联方法[J]. 系统工程与电子技术, 2022, 44(5): 1543-1552. |
[4] | 赵忠凯, 弓浩, 张然. 基于顺序统计滤波和二元积累的辐射源信号检测方法[J]. 系统工程与电子技术, 2022, 44(4): 1085-1092. |
[5] | 吴涛, 王伦文, 朱敬成. 基于迁移学习和注意力机制的伪装图像分割[J]. 系统工程与电子技术, 2022, 44(2): 376-384. |
[6] | 金涛, 王晓峰, 田润澜, 张歆东. 基于改进1DCNN+TCN的雷达辐射源快速识别方法[J]. 系统工程与电子技术, 2022, 44(2): 463-469. |
[7] | 马钰棠, 孙鹏, 张杰勇, 王鹏, 闫云飞, 赵亮. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747-3755. |
[8] | 唐一强, 杨霄鹏, 朱圣铭. 基于注意力机制的混合CNN-BiLSTM低轨卫星信道预测算法[J]. 系统工程与电子技术, 2022, 44(12): 3863-3870. |
[9] | 刘紫燕, 马珊珊, 梁静, 朱明成, 袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. |
[10] | 崔邦彦, 田润澜, 王东风, 崔钢, 石静苑. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224-1231. |
[11] | 刘傲, 周正, 李双明. 基于优化序列提取的相控阵雷达识别方法[J]. 系统工程与电子技术, 2021, 43(3): 656-665. |
[12] | 谢存祥, 张立民, 钟兆根. 基于Hilbert-Huang变换与对抗训练的特定辐射源识别[J]. 系统工程与电子技术, 2021, 43(12): 3478-3487. |
[13] | 高诗飏, 董会旭, 田润澜, 张歆东. 基于SRNN+Attention+CNN的雷达辐射源信号识别方法[J]. 系统工程与电子技术, 2021, 43(12): 3502-3509. |
[14] | 申仕煜, 叶晓东, 王昊, 陶诗飞. 基于多尺度交互结构卷积神经网络的SAR图像相干斑抑制方法[J]. 系统工程与电子技术, 2021, 43(12): 3526-3532. |
[15] | 赵若辰, 王敬东, 林思玉, 顾东泽. 基于卷积神经网络的小型建筑物检测算法[J]. 系统工程与电子技术, 2021, 43(11): 3098-3106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||