系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (1): 1-9.doi: 10.12305/j.issn.1001-506X.2022.01.01
• 电子技术 • 下一篇
张一迪, 王悦斌, 王培志, 杨沁, 陆起涌, 张建秋*, 李旦
收稿日期:
2020-06-29
出版日期:
2022-01-01
发布日期:
2022-01-19
通讯作者:
张建秋
作者简介:
张一迪(1993—), 男, 硕士研究生, 主要研究方向为信号处理及其应用|王悦斌(1993—), 男, 博士研究生, 主要研究方向为信号处理及其应用|王培志(1995—), 男, 硕士研究生, 主要研究方向为信号处理在视频中的应用|杨沁(1996—), 男, 硕士研究生, 主要研究方向为信号处理在视频中的应用|陆起涌(1966—), 男, 教授, 硕士, 主要研究方向为嵌入式系统软硬件设计、工业控制与自动化、物联网应用、大数据分析等|张建秋(1962—), 男, 教授, 博士, 主要研究方向为信号处理及其在通信、控制、测量、图像和雷达中的应用|李旦(1982—), 男, 副教授, 博士, 主要研究方向为信号处理及其在超声、测量、图像和雷达中的应用
基金资助:
Yidi ZHANG, Yuebin WANG, Peizhi WANG, Qin YANG, Qiyong LU, Jianqiu ZHANG*, Dan LI
Received:
2020-06-29
Online:
2022-01-01
Published:
2022-01-19
Contact:
Jianqiu ZHANG
摘要:
提出了一种恒虚警检测信源数的方法, 该方法通过定义一个由观测协方差矩阵相邻特征值之差统计量构成的五维矢量序列, 并利用K均值(K-means)聚类算法将所定义的五维矢量序列分成两类, 且视为信号和噪声子空间。当将噪声子空间所对应的特征值序列描述成一个统计分布, 并通过期望最大(expectation maximization, EM)算法估计出这个统计分布时, 奈曼-皮尔逊(Neyman-Pearson, NP)假设检验就可利用这个分布来对信源数进行恒虚警检测。为了降低提出算法的计算复杂度, 也给出了一个近似的NP假设检验方法。数值仿真结果在验证提出方法有效性的同时, 也表明其优于其他方法。
中图分类号:
张一迪, 王悦斌, 王培志, 杨沁, 陆起涌, 张建秋, 李旦. 恒虚警检测信源数的方法[J]. 系统工程与电子技术, 2022, 44(1): 1-9.
Yidi ZHANG, Yuebin WANG, Peizhi WANG, Qin YANG, Qiyong LU, Jianqiu ZHANG, Dan LI. A method for detecting the number of signal sources with constant false alarm[J]. Systems Engineering and Electronics, 2022, 44(1): 1-9.
表1
本文算法达到的虚警率与高斯混合模型中高斯分布个数的关系"
高斯混合分布 | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
c=2 | 0.007 | 0.058 | 0.111 | 0.211 | 0.311 | 0.407 | 0.493 | 0.572 | 0.654 | 0.752 | 0.899 | 1.000 |
c=3 | 0.006 | 0.056 | 0.108 | 0.209 | 0.306 | 0.406 | 0.507 | 0.584 | 0.665 | 0.757 | 0.891 | 1.000 |
c=5 | 0.005 | 0.056 | 0.108 | 0.208 | 0.306 | 0.406 | 0.502 | 0.592 | 0.674 | 0.763 | 0.886 | 1.000 |
c=10 | 0.005 | 0.055 | 0.108 | 0.206 | 0.305 | 0.404 | 0.503 | 0.595 | 0.681 | 0.768 | 0.884 | 1.000 |
表2
本文算法达到的虚警率与SNR的关系"
SNR/dB | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
0 | 0.005 | 0.055 | 0.108 | 0.208 | 0.307 | 0.406 | 0.503 | 0.591 | 0.675 | 0.763 | 0.886 | 1.000 |
10 | 0.012 | 0.050 | 0.098 | 0.203 | 0.308 | 0.409 | 0.505 | 0.592 | 0.673 | 0.763 | 0.888 | 1.000 |
30 | 0.031 | 0.050 | 0.102 | 0.211 | 0.316 | 0.412 | 0.496 | 0.576 | 0.657 | 0.755 | 0.901 | 1.000 |
表3
本文近似算法达到的虚警率与SNR的关系"
SNR/dB | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
0 | 0.019 | 0.076 | 0.128 | 0.213 | 0.289 | 0.364 | 0.442 | 0.526 | 0.624 | 0.754 | 0.950 | 1.000 |
10 | 0.032 | 0.070 | 0.112 | 0.189 | 0.264 | 0.342 | 0.424 | 0.516 | 0.626 | 0.776 | 0.974 | 1.000 |
30 | 0.033 | 0.033 | 0.037 | 0.066 | 0.067 | 0.099 | 0.206 | 0.516 | 0.992 | 1.000 | 1.000 | 1.000 |
1 |
MARIS E . A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data[J]. IEEE Trans.on Biomedical Engineering, 2003, 50 (8): 935- 949.
doi: 10.1109/TBME.2003.814293 |
2 |
NICOLI M , SIMEONE O , SPAGNOLINI U . Multislot estimation of frequency-selective fast-varying channels[J]. IEEE Trans.on Communications, 2003, 51 (8): 1337- 1347.
doi: 10.1109/TCOMM.2003.815067 |
3 |
CHANG C I , DU Q . Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2004, 42 (3): 608- 619.
doi: 10.1109/TGRS.2003.819189 |
4 | STOICA P, NEHORAI A. MUSIC, maximum likelihood and Cramer-Rao bound[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1988: 2296-2299. |
5 |
BAI J , NG S . Determining the number of factors in approximate factor models[J]. Econometrica, 2002, 70 (1): 191- 221.
doi: 10.1111/1468-0262.00273 |
6 |
MIDDLETON L P , SATCHELL S E . Deriving the arbitrage pricing theory when the number of factors is unknown[J]. Quantitative Finance, 2001, 1 (5): 502- 508.
doi: 10.1088/1469-7688/1/5/302 |
7 |
NADAKUDITI R R , EDELMAN A . Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[J]. IEEE Trans.on Signal Processing, 2008, 56 (7): 2625- 2638.
doi: 10.1109/TSP.2008.917356 |
8 | BIENVENU G, KOPP L. Adaptivity to background noise spatial coherence for high resolution passive methods[C]//Proc. of the Acoustics, Speech, and Signal Processing, 1980, 5: 307-310. |
9 |
IORDACHE M D , BIOUCAS D J M , PLAZA A , et al. MUSIC-CSR: hyperspectral unmixing via multiple signal classification and collaborative sparse regression[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (7): 4364- 4382.
doi: 10.1109/TGRS.2013.2281589 |
10 |
PAULRAJ A , ROY R , KAILATH T . A subspace rotation approach to signal parameter estimation[J]. Proceeding of the IEEE, 1986, 74 (7): 1044- 1046.
doi: 10.1109/PROC.1986.13583 |
11 |
ROY R , KAILATH T . ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276 |
12 | STONE J V . Independent component analysis: a tutorial introduction[M]. Massachusetts: Massachusetts Institute of Technology Press, 2004. |
13 | BURGES C J C . Dimension reduction: a guided tour[J]. Foundations and Trends in Machine Learning, 2010, 2 (4): 275- 365. |
14 | WOLD S , ESBENSEN K , GELADI P . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2 (3): 37- 52. |
15 |
YANG Y Z , ZHANG W , PENG Z F , et al. Multicomponent signal analysis based on polynomial chirplet transform[J]. IEEE Trans.on Industrial Electronics, 2013, 60 (9): 3948- 3956.
doi: 10.1109/TIE.2012.2206331 |
16 |
HAN K , NEHORAI A . Nested vector-sensor array processing via tensor modeling[J]. IEEE Trans.on Signal Processing, 2014, 62 (10): 2542- 2553.
doi: 10.1109/TSP.2014.2314437 |
17 |
AKAIKE H . A new look at the statistical model identification[J]. IEEE Trans.on Automatic Control, 1974, 19 (6): 716- 723.
doi: 10.1109/TAC.1974.1100705 |
18 |
WAX M , KAILATH T . Detection of signals by information theoretic criteria[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (2): 387- 392.
doi: 10.1109/TASSP.1985.1164557 |
19 |
RISSANEN J . Modeling by shortest data description[J]. Automatica, 1978, 14 (5): 465- 471.
doi: 10.1016/0005-1098(78)90005-5 |
20 |
WAX M , ZISKIND I . Detection of the number of coherent signals by the MDL principle[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1989, 37 (8): 1190- 1196.
doi: 10.1109/29.31267 |
21 | RADOI E , QUINQUIS A . A new method for estimating the number of harmonic components in noise with application in high resolution radar[J]. EURASIP Journal on Applied Signal Processing, 2004, (8): 1177- 1188. |
22 |
YIN Y , KRISHNAIAH P . On some nonparametric methods for detection of the number of signals[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1987, 35 (11): 1533- 1538.
doi: 10.1109/TASSP.1987.1165063 |
23 |
WONG K M , ZHANG Q T , REILLY J P , et al. On information theoretic criteria for determining the number of signals in high resolution array processing[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1990, 38 (11): 1959- 1971.
doi: 10.1109/29.103097 |
24 |
WU Q , FUHRMANN D R . A parametric method for determining the number of signals in narrow-band direction finding[J]. IEEE Trans.on Signal Processing, 1991, 39 (8): 1848- 1857.
doi: 10.1109/78.91155 |
25 | DJURIC P M. Model selection based on asymptotic Bayes theory[C]//Proc. of the Statistical Signal and Array Processing, 1994. |
26 |
BISHOP W B , DJURIC P M . Model order selection of damped sinusoids in noise by predictive densities[J]. IEEE Trans.on Signal Processing, 1996, 44 (3): 611- 619.
doi: 10.1109/78.489034 |
27 | QUINLAN A , BARBOT J P , LARZABAL P , et al. Model order selection for short data: an exponential fitting test (EFT)[J]. EURASIP Journal on Applied Signal Processing, 2007, (1): 71953- 71953. |
28 |
DI A . Multiple source location-A matrix decomposition approach[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (5): 1086- 1091.
doi: 10.1109/TASSP.1985.1164700 |
29 |
LIAVAS A P , REGALIA P A . On the behavior of information theoretic criteria for model order selection[J]. IEEE Trans.on Signal Processing, 2001, 49 (8): 1689- 1695.
doi: 10.1109/78.934138 |
30 |
HE Z , CICHOCKI A , XIE S , et al. Detecting the number of clusters in n-way probabilistic clustering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2010, 32 (11): 2006- 2021.
doi: 10.1109/TPAMI.2010.15 |
31 | ROHLING H . Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Trans.on Aerospace and Electronic Systems, 1983, (4): 608- 621. |
32 |
JAIN A K . Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31 (8): 651- 666.
doi: 10.1016/j.patrec.2009.09.011 |
33 | HARTIGAN J A , WONG M A . Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28 (1): 100- 108. |
34 |
LIKAS A , VLASSIS N , VERBEEK J J . The global K-means clustering algorithm[J]. Pattern Recognition, 2003, 36 (2): 451- 461.
doi: 10.1016/S0031-3203(02)00060-2 |
35 | POOR H V . An introduction to signal detection and estimation[M]. 2nd ed London: Springer-Verlag, 1988. |
36 | STOICA P , MOSES R L . Introduction to spectral analysis[M]. New York, NJ: Prentice Hall, 1997. |
37 |
KAY S M , MARPLE S L . Spectrum analysis—a modern perspective[J]. Proc.of the IEEE, 1981, 69 (11): 1380- 1419.
doi: 10.1109/PROC.1981.12184 |
38 | GUERCI J R . Space-time adaptive processing for radar[M]. London: Artech House, 2014. |
39 |
SCARGLE J D . Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal, 1982, 263, 835- 853.
doi: 10.1086/160554 |
40 |
BABU P , STOICA P , LI J , et al. Analysis of radial velocity data by a novel adaptive approach[J]. The Astronomical Journal, 2010, 139 (2): 783- 795.
doi: 10.1088/0004-6256/139/2/783 |
41 | GOLUB G , PEREYRA V . Separable nonlinear least squares: the variable projection method and its applications[J]. Inverse Problems, 2003, 19 (2): 3172- 3184. |
42 |
STOICA P , BABU P , LI J . New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Trans.on Signal Processing, 2011, 59 (1): 35- 71.
doi: 10.1109/TSP.2010.2086452 |
43 | WILSON R . Multiresolution Gaussian mixture models: theory and application[J]. Department of Computer Science, 2000, 142 (35): 1212- 1215. |
44 |
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x |
45 |
OZKAN H , OZKAN F , KOZAT S S . Online anomaly detection under Markov statistics with controllable type-I error[J]. IEEE Trans.on Signal Processing, 2016, 64 (6): 1435- 1445.
doi: 10.1109/TSP.2015.2504345 |
[1] | 王磊, 张志勇, 曾维贵, 曹司磊, 张天赫. 基于数据场联合决策图改进的GMM聚类[J]. 系统工程与电子技术, 2022, 44(9): 2743-2751. |
[2] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[3] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[4] | 曹鹏宇, 杨承志, 石礼盟, 吴宏超. 基于PSO-DBSCAN和SCGAN的未知雷达信号处理方法[J]. 系统工程与电子技术, 2022, 44(4): 1158-1165. |
[5] | 王海滨, 关欣, 衣晓. 基于区间数聚类的目标分群算法[J]. 系统工程与电子技术, 2022, 44(2): 577-583. |
[6] | 于博文, 于琳, 吕明, 张捷. 基于M-ANFIS-PNN的目标威胁评估模型[J]. 系统工程与电子技术, 2022, 44(10): 3155-3163. |
[7] | 范加利, 田少兵, 黄葵, 朱兴动. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46. |
[8] | 杨刚, 吴旭升, 孙盼, 朱浩, 熊胜. 基于性能的复杂装备现场可更换单元规划[J]. 系统工程与电子技术, 2021, 43(8): 2174-2180. |
[9] | 吕跃, 杨爱武, 李战武, 奚之飞. 空战决策知识构建方法研究[J]. 系统工程与电子技术, 2021, 43(7): 1866-1874. |
[10] | 张佳琦, 陶海红, 张修社. 量测点迹空间聚类的多传感器多帧检测算法[J]. 系统工程与电子技术, 2021, 43(6): 1533-1540. |
[11] | 马倩, 邹焕新, 李美霖, 成飞, 贺诗甜. 基于SNIC的双时相SAR图像超像素协同分割算法[J]. 系统工程与电子技术, 2021, 43(5): 1198-1209. |
[12] | 施伟, 黄红蓝, 冯旸赫, 刘忠. 面向多类别分类问题的子抽样主动学习方法[J]. 系统工程与电子技术, 2021, 43(3): 700-708. |
[13] | 阳榴, 朱卫纲, 吕守业, 马爽. 面向非协作多功能雷达的波形单元提取方法[J]. 系统工程与电子技术, 2021, 43(10): 2843-2850. |
[14] | 刘庆国, 刘新学, 武健, 李亚雄, 陈豪. 基于改进NSGA-Ⅲ的多SGSW火力分配优化[J]. 系统工程与电子技术, 2020, 42(9): 1995-2002. |
[15] | 程万里, 张晶, 王慧. 超密集网络中基于聚类的资源分配方案[J]. 系统工程与电子技术, 2020, 42(7): 1623-1629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||