系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (12): 3683-3693.doi: 10.12305/j.issn.1001-506X.2021.12.32
翟翠红, 汪建均*, 冯泽彪
收稿日期:
2021-02-03
出版日期:
2021-11-24
发布日期:
2021-11-30
通讯作者:
汪建均
作者简介:
翟翠红(1987—), 女, 博士研究生, 主要研究方向为质量管理与质量工程、计算机试验设计|汪建均(1977—), 男, 副教授, 博士研究生导师, 博士, 主要研究方向为质量管理与质量工程、工业工程、应用统计学|冯泽彪(1988—), 男, 博士研究生, 主要研究方向为质量管理与质量工程、计算机试验设计与机器学习
基金资助:
Cuihong ZHAI, Jianjun WANG*, Zebiao FENG
Received:
2021-02-03
Online:
2021-11-24
Published:
2021-11-30
Contact:
Jianjun WANG
摘要:
针对高维试验数据的稳健参数设计问题, 在高斯过程(Gaussian process, GP)的建模框架下, 采用部分平行的GP(parallel partial GP, PPGP)模型来构建试验因子与多质量特性之间的响应曲面, 在此基础上运用多元质量损失函数作为优化指标来获得可控因子的最佳参数设计值。并且以一个经典仿真算例和两个实际案例验证了所提方法的有效性和优劣性。研究结果表明,与独立建模的单变量GP模型或Kriging模型比较而言, 所提方法不仅能够有效地处理高维试验数据的建模与参数优化问题, 而且能够获得更为稳健的优化结果, 运行效率更高。
中图分类号:
翟翠红, 汪建均, 冯泽彪. 基于高斯过程模型的多响应稳健参数设计[J]. 系统工程与电子技术, 2021, 43(12): 3683-3693.
Cuihong ZHAI, Jianjun WANG, Zebiao FENG. Robust parameter design of multiple responses based on Gaussian process model[J]. Systems Engineering and Electronics, 2021, 43(12): 3683-3693.
表1
测试函数详情"
函数名称 | 函数特征 | 函数详情 |
Cross-in-Tray | 多个局部极小值 | |
Bohachevsky | 碗状 | |
McCormick | 盘状 | |
Easom | 陡降 |
表2
模型优化结果对比"
测试函数 | 真实极值 | 本文方法优化结果 | 单变量GP方法优化结果 | |||||||
优化极值 | 极值偏差 | 均方根误差 | 95%后验置信区间覆盖率 | 优化极值 | 极值偏差 | 均方根误差 | 95%后验置信区间覆盖率 | |||
Cross-in-Tray | -2.062 6 | -1.945 5 | 0.117 1 | 0.178 1 | 0.845 0 | -1.657 3 | 0.405 3 | 0.221 7 | 0.955 0 | |
Bohachevsky | 0 | 0.147 1 | 0.147 1 | 1.594 9 | 1.000 0 | 0.524 9 | 0.524 9 | 98.538 3 | 0.690 0 | |
McCormick | -8.951 8 | -8.204 1 | 0.747 7 | 2.904 8 | 0.995 0 | -8.223 3 | 0.728 5 | 110.529 3 | 0.990 0 | |
Easom | -1 | -0.009 1 | 0.990 9 | 0.046 0 | 0.935 0 | -0.000 3 | 0.999 7 | 0.001 9 | 0.975 0 | |
平均值 | — | — | 0.500 7 | 1.181 0 | 0.943 8 | — | 0.664 6 | 52.322 8 | 0.902 5 |
1 |
YAN H , PAYNABAR K , SHI J J . Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse decomposition[J]. Technometrics, 2018, 60 (2): 181- 197.
doi: 10.1080/00401706.2017.1346522 |
2 |
TANSEL I C Y , YILDIRIM S . MOORA-based Taguchi optimisation for improving product or process quality[J]. International Journal of Production Research, 2013, 51 (11): 3321- 3341.
doi: 10.1080/00207543.2013.774471 |
3 |
SHAH H K , MONTGOMERY D C , CARLYLE W M . Response surface modeling and optimiza-tion in multiresponse experiments using seemingly unrelated regressions[J]. Quality Engineering, 2004, 16 (3): 387- 397.
doi: 10.1081/QEN-120027941 |
4 |
WANG J J , MA Y Z , TSUNG F , et al. Economic parameter design for ultra-fast laser micro-drilling process[J]. International Journal of Production Research, 2019, 57 (20): 6292- 6314.
doi: 10.1080/00207543.2019.1566660 |
5 | TAGUCHI G . Introduction to quality engineering[M]. New York: Quality Resources, 1986. |
6 |
WU C F J . Post-fisherian experimentation: from physical to virtual[J]. Journal of the American Statistical Association, 2015, 110 (510): 612- 620.
doi: 10.1080/01621459.2014.914441 |
7 |
WENG T W , MELATI D , MELLONI A , et al. Stochastic simulation and robust design optimization of integrated photonic filters[J]. Nanophotonics, 2017, 6 (1): 299- 308.
doi: 10.1515/nanoph-2016-0110 |
8 | RAJAN A, KUANG Y C, OOI M, et al. Moment-based mea-surement uncertainty evaluation for reliability analysis in design optimization[C]//Proc. of the IEEE Instrumentation and Mea-surement Technology Conference, 2016. |
9 | LIU H W , WANG M R , WANG J K , et al. Monte carlo simulations of gas flow and heat transfer in vacuum packaged mems devices[J]. Applied Thermal Engineering, 2007, 27 (2): 323- 329. |
10 |
WANG G G , SHAN S . Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129 (4): 370- 380.
doi: 10.1115/1.2429697 |
11 | GU L. A comparison of polynomial based regression models in vehicle safety analysis[C]//Proc. of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2001: 509-514. |
12 |
SHAN S Q , WANG G G . Survey of modeling and optimization strategies to solve high-dimen-sional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41 (2): 219- 241.
doi: 10.1007/s00158-009-0420-2 |
13 |
LIANG H Q , ZHU M , WU Z . Using cross-validation to design trend function in Kriging surrogate modeling[J]. American Institute of Aeronautics and Astronautics Journal, 2014, 52 (10): 2313- 2327.
doi: 10.2514/1.J052879 |
14 |
ZHAO L , CHOI K K , LEE I . Metamodeling method using dynamic kriging for design optimization[J]. American Institute of Aeronautics and Astronautics Journal, 2011, 49 (9): 2034- 2046.
doi: 10.2514/1.J051017 |
15 | CHEN R B , WANG W C , WU C F J . Building surrogates with overcomplete bases in computer experiments with applications to bistable laser diodes[J]. ⅡE Transactions, 2010, 43 (1): 39- 53. |
16 | JIN R C, CHEN W, SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]//Proc. of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2002: 539-548. |
17 | MYERS R H , MONTGOMERY D C . Response surface me-thodology: process and product optimization using designed experiments[M]. Toronto: Wiley, 1995. |
18 |
PAPADRAKAKIS M , LAGAROS N D , TSOM-PANAKIS Y . Structural optimization using evolution strategies and neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 156 (1-4): 309- 333.
doi: 10.1016/S0045-7825(97)00215-6 |
19 |
VARADARAJAN S , CHEN W , PELKA C J . Robust concept exploration of propulsion systems with enhanced model approximation capabilities[J]. Engineering Optimization, 2000, 32 (3): 309- 334.
doi: 10.1080/03052150008941302 |
20 | FRIEDMAN J H . Multivariate adaptive regressive splines[J]. The Annals of Statistics, 1991, 19 (1): 1- 67. |
21 |
MULLUR A A , MESSAC A . Extended radial basis functions: more flexible and effective metamodeling[J]. American Institute of Aeronautics and Astronautics Journal, 2005, 43 (6): 1306- 1315.
doi: 10.2514/1.11292 |
22 |
FANG H , HORSTEMEYER M F . Global response approximation with radial basis functions[J]. Journal of Engineering Optimization, 2006, 38 (4): 407- 424.
doi: 10.1080/03052150500422294 |
23 |
SIMPSON T W , MAUERY T M , KORTE J J , et al. Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization[J]. American Institute of Aeronautics and Astronautics Journal, 2001, 39 (12): 2233- 2241.
doi: 10.2514/2.1234 |
24 |
MARTIN J D , SIMPSON T W . On the use of Kriging models to approximate deterministic computer models[J]. American Institute of Aeronautics and Astronautics Journal, 2005, 43 (4): 853- 863.
doi: 10.2514/1.8650 |
25 |
BEERS W V , KLEIJNEN J . Kriging for interpolation in random simulation[J]. Journal of the Operational Research Society, 2003, 54 (3): 255- 262.
doi: 10.1057/palgrave.jors.2601492 |
26 |
CLARKE S M , GRIEBSCH J H , SIMPSON T W . Analysis of support vector regression for approximation of complex engineering analyses[J]. Journal of Mechanical Design, 2005, 127 (6): 1077- 1087.
doi: 10.1115/1.1897403 |
27 | LEE K , CHO H , LEE I . Variable selection using Gaussian process regression-based metrics for high-dimensional model approximation with limited data[J]. Structural and Multidisciplinary Optimization, 2018, 59 (4): 1439- 1454. |
28 |
LEE I , CHOI K K , ZHAO L . Sampling-based RBDO using the stochastic sensitivity analysis and dynamic Kriging (D-Kriging) method and stochastic sensitivity analysis[J]. Structural and Multidisciplinary Optimization, 2011, 44 (3): 299- 317.
doi: 10.1007/s00158-011-0659-2 |
29 | SOBOL I . Sensitivity estimates for nonlinear mathematical models[J]. Mathematical Modelling and Computational Experiments, 1993, 1 (1): 112- 118. |
30 | 汪建均, 屠雅楠, 马义中. 结合SUR与因子效应原则的多响应质量设计[J]. 管理科学学报, 2020, 23 (12): 12- 29. |
WANG J J , TU Y N , MA Y Z . Multi-response quality design intergrating SUR models with factorial effect principles[J]. Journal of Management Sciences in China, 2020, 23 (12): 12- 29. | |
31 | CRAIG P S , GOLDSTEIN M , SEHEULT A H , et al. Bayes linear strategies for matching hydrocarbon reservoir history[J]. Bayesian Statistics, 1996, 5, 69- 95. |
32 | KENNEDY M C, O'HAGAN A, HIGGINS N. Bayesian analy- sis of computer code outputs[C]//Proc. of the Quantitative Methods for Current Environmental Issues, 2002: 227-243. |
33 | LIU F , WEST M . A dynamic modelling strategy for Bayesian computer model emulation[J]. Bayesian Analysis, 2009, 4 (2): 393- 411. |
34 |
QIAN P Z G , WU H , WU C F J . Gaussian process models for computer experiments with qualitative and quantitative factors[J]. Technometrics, 2008, 50 (3): 383- 396.
doi: 10.1198/004017008000000262 |
35 | MELKUMYAN A, RAMOS F. Multi-kernel Gaussian processes[C]//Proc. of the 22nd International Joint Conference on Artificial Intelligence, 2011: 1408-1413. |
36 |
LI B , GENTON M G , SHERMAN M . Testing the covariance structure of multivariate random fields[J]. Biometrika, 2008, 95 (4): 813- 829.
doi: 10.1093/biomet/asn053 |
37 |
SUNG C L , WANG W , PLUMLEE M , et al. Multiresolution functional ANOVA for large-scale, many-input computer experiments[J]. Journal of the American Statistical Association, 2020, 115 (530): 908- 919.
doi: 10.1080/01621459.2019.1595630 |
38 |
CHEN T , HADINOTO K , YAN W J , et al. Efficient meta-modelling of complex process simulations with time-space dependent outputs[J]. Computers and Chemical Engineering, 2011, 35 (3): 502- 509.
doi: 10.1016/j.compchemeng.2010.05.013 |
39 | GHOSH M , LI Y X , ZENG L , et al. Modeling multivariate profiles using Gaussian process-controlled B-splines[J]. ⅡSE Transactions, 2020, 53 (7): 787- 798. |
40 |
LI Y X , ZHOU Q . Pairwise meta-modeling of multivariate output computer models using nonseparable covariance function[J]. Technometrics, 2016, 58 (4): 483- 494.
doi: 10.1080/00401706.2015.1079244 |
41 | 冯泽彪, 汪建均, 马义中. 基于多变量高斯过程模型的贝叶斯建模与稳健参数设计[J]. 系统工程理论与实践, 2020, 40 (3): 703- 713. |
FENG Z B , WANG J J , MA Y Z . Bayesian modeling and robust parameter design based on multivariate Gaussian process model[J]. Systems Engineering-Theory & Practice, 2020, 40 (3): 703- 713. | |
42 | GU M Y , BERGER J O . Parallel partial Gaussian process emulation for computer models with massive output[J]. The Annals of Applied Statistics, 2016, 10 (3): 1317- 1347. |
43 | RASMUSSEN C E , WILLIAMS C K I . Gaussian processes for machine learning (adaptive computation and machine learning)[M]. Cambridge: MIT Press, 2005. |
44 | FORRESTER A , SOBESTER A , KEANE A . Engineering design via surrogate modelling: a practical guide[M]. New York: Wiley, 2008. |
45 | SACKS J , WELCH W J , MITCHELL T J , et al. Design and analysis of computer experiments: rejoinder[J]. Statistical Science, 1989, 4 (4): 433- 435. |
46 | GAMERMAN D , LOPES H F . Markov chain Monte Carlo: stochastic simulation for Bayesian inference[M]. 2nd. New York: Chapman & Hall/CRC, 2006. |
47 |
FENG Z B , WANG J J , MA Y Z , et al. Robust parameter design based on Gaussian process with model uncertainty[J]. International Journal of Production Research, 2021, 59 (9): 2772- 2788.
doi: 10.1080/00207543.2020.1740344 |
48 |
ARTILES-LEÓN N . A pragmatic approach to multi-response problems using loss functions[J]. Quality Engineering, 1996, 9 (2): 213- 220.
doi: 10.1080/08982119608919037 |
49 | PIGNATIELLO J J . Strategies for robust multi-response quality engineering[J]. ⅡE Transactions, 1993, 25 (3): 5- 15. |
50 |
NAIR V N , ABRAHAM B , MACKAY J , et al. Taguchi's parameter design: a panel discussion[J]. Technometrics, 1992, 34 (2): 127- 161.
doi: 10.1080/00401706.1992.10484904 |
51 |
NAIR V N , TAAM W , YE K Q . Analysis of functional responses from robust design studies[J]. Journal of Quality Technology, 2002, 34 (4): 355- 370.
doi: 10.1080/00224065.2002.11980169 |
52 |
ALSHRAIDEH H , CASTILLO E D . Gaussian process modeling and optimization of profile response experiments[J]. Quality and Reliability Engineering International, 2014, 30 (4): 449- 462.
doi: 10.1002/qre.1497 |
53 |
GOVAERTS B , NOEL J . Analysing the results of a designed experiment when the response is a curve: methodology and application in metal injection moulding[J]. Quality and Reliability Engineering International, 2005, 21 (5): 509- 520.
doi: 10.1002/qre.737 |
[1] | 陈云翔, 李京峰, 项华春, 李恒年. 基于逆高斯退化过程的面向任务系统CBM优化模型[J]. 系统工程与电子技术, 2022, 44(1): 338-346. |
[2] | 王高岳, 张慧君, 陈贤, 李昊. 基于高斯过程回归的大气进入段航天器飞行能力预测方法[J]. 系统工程与电子技术, 2020, 42(10): 2334-2339. |
[3] | 冯泽彪, 汪建均. 考虑响应共变特性的多响应稳健参数设计[J]. 系统工程与电子技术, 2019, 41(9): 2048-2057. |
[4] | 陈旭丹, 孙新利, 姬国勋, 李振. 基于逆高斯退化模型的错误指定分析[J]. 系统工程与电子技术, 2019, 41(3): 693-700. |
[5] | 杨世娟, 汪建均. 基于分层贝叶斯模型的稳健参数设计[J]. 系统工程与电子技术, 2019, 41(10): 2293-2303. |
[6] | 顾晓光, 马义中, 刘健, 汪建均. 基于单值数据过程能力指数的多元质量特性稳健参数设计[J]. 系统工程与电子技术, 2017, 39(2): 362-368. |
[7] | 张流洋, 马义中, 汪建均, 吴锋. 考虑偏度特征的动态多响应稳健参数设计与优化[J]. 系统工程与电子技术, 2016, 38(2): 339-346. |
[8] | 李纪真, 孟相如, 温祥西, 康巧燕. 萤火虫群算法优化高斯过程的网络安全态势预测[J]. 系统工程与电子技术, 2015, 37(8): 1887-1893. |
[9] | 孟阳, 高社生, 王维. 基于高斯过程回归的平方根UPF算法[J]. 系统工程与电子技术, 2015, 37(12): 2817-2822. |
[10] | 张研, 苏国韶, 燕柳斌. 基于粒子群优化与高斯过程的协同优化算法[J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1342-1347. |
[11] | 陈盈果, 刘晓路, 陈英武, 贺仁杰. 免梯度混合优化算法在卫星系统顶层设计中的应用[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1161-1166. |
[12] | 魏喜庆,宋申民,张保群. 基于无模型无迹粒子滤波的编队卫星相对运动估计[J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1215-1219. |
[13] | 姚金勇, 苏海博, 李晓钢. 基于状态转移随机模型的SSADT可靠性评估方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 429-432. |
[14] | 瞿师, 吴玲达, 魏迎梅, 李松, 冯晓萌. 基于统计学习的逆向运动学实现方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1891-1895. |
[15] | 李鹏,宋申民,陈兴林,段广仁. 联合高斯回归的平方根UKF方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(6): 1281-1285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||