1 |
ZHENG X T , HUANG H , LI W P . A modified active disturbance rejection control for fast steering mirror in aerospace application[J]. Journal of Physics: Conference Series, 2020, 1509 (1): 012028.
doi: 10.1088/1742-6596/1509/1/012028
|
2 |
LIN D, WU Y M, ZHU F. Research on precision tracking on fast steering mirror and control strategy[C]//Proc. of the International Conference on Power and Energy Engineering, 2018: 012009.
|
3 |
PEREIRA P D V , HUNWARDSEN M T , CAHOY K . Characterization of laser thermal loading on microelectromechanical sytems-based fast steering mirror in vacuum[J]. Optical Engineering, 2020, 59 (5): 056109.
|
4 |
ZHANG M, LIANG Y B. Compound tracking in ATP system for free space optical communication[C]//Proc. of the IEEE International Conference on Mechatronic Science, Electric Engineering and Computer, 2011: 454-456.
|
5 |
LIU W , YAO K N , HUANG D N , et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 2016, 24 (12): 13288- 13302.
doi: 10.1364/OE.24.013288
|
6 |
DONG Z C , JIANG A M , DAI Y F , et al. Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes[J]. Applied Optics, 2018, 57 (31): 9307- 9315.
doi: 10.1364/AO.57.009307
|
7 |
WILLIAMS R J , KITZLER O , BAI Z X , et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24 (5): 1602214.
|
8 |
邹紫盛, 丛爽, 尚伟伟, 等. 量子定位中精跟踪系统状态滤波及控制器设计[J]. 系统工程与电子技术, 2019, 41 (3): 601- 610.
|
|
ZOU Z S , CONG S , SHANG W W , et al. State filtering and controller design for fine tracking system in quantum positioning[J]. Systems Engineering and Electronics, 2019, 41 (3): 601- 610.
|
9 |
赵继庭, 金刚石, 高旭辉. 基于快速反射镜的模糊自适应PID控制算法研究[J]. 激光与红外, 2018, 48 (6): 756- 761.
doi: 10.3969/j.issn.1001-5078.2018.06.016
|
|
ZHAO J T , JIN G S , GAO X H . Fuzzy adaptive PID control algorithm based on fast steering mirror[J]. Laser & Infrared, 2018, 48 (6): 756- 761.
doi: 10.3969/j.issn.1001-5078.2018.06.016
|
10 |
CHEN C , CAO H B , DING L , et al. Trajectory tracking control of WMRs with lateral and longitudinal slippage based on active disturbance rejection control[J]. Robotics and Autonomous Systems, 2018, 140 (107): 236- 245.
|
11 |
WANG K D, SU X Q, LI Z, et al. ADRC system of FSM for image motion compensation[C]//Proc. of the 2nd International Conference on Photonics and Optical Engineering, 2017: 1025604.
|
12 |
DONG Q R , LIU Y K , ZHANG Y L , et al. Improved ADRC with ILC control of a CCD-based tracking loop for fast steering mirror system[J]. IEEE Photonics Journal, 2018, 10 (4): 6601314.
|
13 |
黄浦, 杨秀丽, 修吉宏, 等. 音圈致动快速反射镜的降阶自抗扰控制[J]. 光学精密工程, 2020, 28 (6): 1365- 1374.
|
|
HUANG P , YANG X L , XIU J H , et al. Reduced-order active disturbance rejection control of fast steering mirror driven by VCA[J]. Optics and Precision Engineering, 2020, 28 (6): 1365- 1374.
|
14 |
CUI N, LIU Y, CHEN X I, et al. Active disturbance rejection controller of fine tracking system for IREE space optical communication[C]//Proc. of the Society of Photo Optical Instrumentation Engineers Conference, 2013: 890613.
|
15 |
LIU J J , SUN M W , CHEN Z Q , et al. High AOA decoupling control for aircraft based on ADRC[J]. Journal of Systems Engineering and Electronics, 2020, 31 (2): 393- 402.
doi: 10.23919/JSEE.2020.000016
|
16 |
YANG R G , SUN M W , CHEN Z Q . Active disturbance rejection control on first-order plant[J]. Journal of Systems Engineering and Electronics, 2011, 22 (1): 95- 102.
doi: 10.3969/j.issn.1004-4132.2011.01.012
|
17 |
WANG Y Q , ZHANG G C , SHI Z B , et al. Finite-time speed control of marine diesel engine based on ADRC[J]. Mathematical Problems in Engineering, 2020, 2709460.
|
18 |
HAN J Q . From PID to active disturbance rejection control[J]. IEEE Trans.on Industrial Electronics, 2009, 56 (3): 900- 906.
doi: 10.1109/TIE.2008.2011621
|
19 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the IEEE lnternational Conference on Neural Networks, 1995: 1942-1948.
|
20 |
AKKOUCHE N , BALISTROU M , LOUB-AR K , et al. Pyrolysis polybutadiene model including self-heating and self-cooling effects: kinetic study via particle swarm optimization[J]. Waste and Biomass Valorization, 2020, 11 (2): 653- 667.
doi: 10.1007/s12649-018-0538-9
|
21 |
LI H Z , WANG Y . Particle swarm optimization for rigid body reconstruction after micro-Doppler removal in radar analysis[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 488- 499.
doi: 10.23919/JSEE.2020.000023
|
22 |
ZHANG X L , TAN Y J , YANG Z W . Resource allocation optimization of equipment development task based on MOPSO algorithm[J]. Journal of Systems Engineering and Electronics, 2019, 30 (6): 1132- 1143.
doi: 10.21629/JSEE.2019.06.09
|
23 |
XU Z , ZHANG E Z , CHEN Q W . Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization[J]. Journal of Systems Engineering and Electronics, 2020, 31 (1): 130- 141.
|
24 |
WANG Q Q , LI Z D , WANG W W , et al. Multi-objective optimization design of wheat centralized seed feeding device based on particle swarm optimization (PSO) algorithm[J]. International Journal of Agricultural and Biological Engineering, 2020, 13 (6): 76- 84.
doi: 10.25165/j.ijabe.20201306.5665
|
25 |
SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proc. of the IEEE World Congress on Computational Intelligence, 1998: 69-73.
|
26 |
南杰琼, 王晓东. 改进惯性权值的粒子群优化算法[J]. 西安工程大学学报, 2017, 31 (6): 836- 838.
|
|
NAN J Q , WANG X D . Particle swarm optimization algorithm with improved inertia weight[J]. Journal of Xi'an Polytechnic University, 2017, 31 (6): 836- 838.
|
27 |
张继荣, 张天. 基于改进粒子群算法的PID控制参数优化[J]. 计算机工程与设计, 2020, 41 (4): 1035- 1040.
|
|
ZHANG J R , ZHANG T . Optimization of PID control parameters based on improved particle group algorithm[J]. Computer Engineering and Design, 2020, 41 (4): 1035- 1040.
|
28 |
ZHANG G H , HU Y F , SUN J H , et al. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and Evolutionary Computation, 2020, 54 (4): 100664.
|
29 |
MIRJALILI S . Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27 (4): 1053- 1073.
doi: 10.1007/s00521-015-1920-1
|
30 |
WITTING M, VAN H L, TUNBRIDGE D E L, et al. In-orbit measurements of micro accelerations of ESA's communication satellite Olympus[C]//Proc. of the Free-Space Laser Communication Technologies Ⅱ, 1990: 205-214.
|