1 |
程一凡, 曲至诚, 张更新. 低轨卫星星座物联网业务量建模[J]. 电子与信息学报, 2021, 43 (4): 1050- 1056.
|
|
CHENG Y F , QU Z C , ZHANG G X . Traffic modeling for low earth orbit satellite constellation internet of things[J]. Journal of Electronics and Information Technology, 2021, 43 (4): 1050- 1056.
|
2 |
王磊, 李德仁, 陈锐志, 等. 低轨卫星导航增强技术—机遇与挑战[J]. 中国工程科学, 2020, 22 (2): 144- 152.
|
|
WANG L , LI D R , CHEN R Z , et al. Low earth orbiter (LEO) navigation augmentation: opportunities and challenges[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22 (2): 144- 152.
|
3 |
MARSIS J , NAHIMANA D F , VIANDIER N , et al. GNSS accuracy enhancement based on pseudo range error estimation in an urban propagation environment[J]. Expert Systems with Applications, 2013, 40 (15): 5956- 5964.
doi: 10.1016/j.eswa.2013.05.026
|
4 |
ZHENG S Y , LI R , HUANG Z G , et al. Determination of fast corrections for satellite-based augmentation system: a user equivalent range error-based method[J]. IEEE Access, 2019, 7, 178662- 178674.
doi: 10.1109/ACCESS.2019.2953096
|
5 |
MUHAMMAD A A , LIU P L , WANG Y Z , et al. GNSS position-ing accuracy enhancement based on robust statistical MM estimation theory for ground vehicles in challenging environments[J]. Applied Sciences, 2018, 8 (6): 876.
doi: 10.3390/app8060876
|
6 |
张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48 (9): 1073- 1087.
|
|
ZHANG X H , MA F J . Review of the development of LEO navi gation-augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (9): 1073- 1087.
|
7 |
章燕申, 张春熹, 蒋军彪, 等. 光电子学与光学陀螺仪[M]. 北京: 清华大学出版社, 2017.
|
|
ZHANG Y S , ZHANG C X , JIANG J B , et al. Optoelectronics and optical gyroscopes[M]. Beijing: Tsinghua University Press, 2017.
|
8 |
WANG M S , WU W Q , HE X F , et al. Consistent ST-EKF for long distance land vehicle navigation based on SINS/OD integration[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (11): 10525- 10534.
doi: 10.1109/TVT.2019.2939679
|
9 |
MITANI S, MIZUTANI T, SAKAI S I. Current status of fiber optic gyro efforts for space applications in Japan[C]//Proc. of the Fiber Optic Sensors & Applications XⅢ, 2016: 985208.
|
10 |
Tamagawa Seiki Company Limited. 3-axis FOG for subminiature satellite data manual[EB/OL]. [2021-02-25]. https://www.tamagawa-seiki.co.jp/products/gyro/3-axis-gyro-TA7584.html.
|
11 |
Optolink Company Limited. Single axis fiber-optic gyroscope SRS200 data manual[EB/OL]. [2021-02-25]. http://www.optolink.ru/en/products/single_axis_fog/srs-200.
|
12 |
Optolink Company Limited. Three axis fiber-optic gyroscope TRS500 data manual[EB/OL]. [2021-02-25]. http://www.optolink.ru/en/products/three_axis_fog/trs500.
|
13 |
张现亮, 朱敏波, 李琴. 空间辐照机理与防护技术研究[J]. 空间电子技术, 2007, 4 (3): 17- 20.
|
|
ZHANG X L , ZHU M B , LI Q . Research on space irradiation mechanism and protection technology[J]. Space Electronic Technology, 2007, 4 (3): 17- 20.
|
14 |
ZHANG C X , DAI M P , PAN X , et al. High precision tri-axial quartz flexible accelerometers resolution measurement method based on tri-axial turntable[J]. IEEE Access, 2020, 8, 53463- 53470.
doi: 10.1109/ACCESS.2020.2979757
|
15 |
唐圣金, 郭晓松, 王振业, 等. 基于故障树的多光纤陀螺冗余系统可靠性分析[J]. 中国惯性技术学报, 2013, 21 (2): 259- 263.
doi: 10.3969/j.issn.1005-6734.2013.02.026
|
|
TANG S J , GUO X S , WANG Z Y , et al. Reliability analysis for redundant system with multiple FOGs based on fault tree analysis method[J]. Journal of Chinese Inertial Technology, 2013, 21 (2): 259- 263.
doi: 10.3969/j.issn.1005-6734.2013.02.026
|
16 |
赵琳, 苏中华, 郝勇, 等. 基于对偶数和改进EKF的敏捷卫星姿态确定算法[J]. 系统工程与电子技术, 2013, 35 (12): 2552- 2558.
doi: 10.3969/j.issn.1001-506X.2013.12.18
|
|
ZHAO L , SU Z H , HAO Y , et al. Algorithm for agile satellite attitude estimation based on dual quaternion and improved EKF[J]. Systems Engineering and Electronics, 2013, 35 (12): 2552- 2558.
doi: 10.3969/j.issn.1001-506X.2013.12.18
|
17 |
MA K , SONG N F , JING J , et al. Configuration optimization in miniature interferometric fiber-optic gyroscopes for space application[J]. IEEE Sensors Journal, 2020, 20 (13): 7107- 7117.
doi: 10.1109/JSEN.2020.2977584
|
18 |
JING J , XU H J , MA D Y , et al. A novel interferometric fiber optic gyroscope with random walk fault diagnosis for space application[J]. Optics and Lasers in Engineering, 2012, 50 (7): 958- 963.
doi: 10.1016/j.optlaseng.2012.02.003
|
19 |
ZHU M D , SONG N F , PAN X . Research on fault diagnosis criterion for system clock of fiber optic gyroscope[J]. Optik, 2013, 124 (20): 4642- 4646.
doi: 10.1016/j.ijleo.2013.01.072
|
20 |
JING J , ZHANG T , MA K , et al. Fault diagnosis of space-borne fiber optic gyros based on random walk coefficient prediction and in-orbit calculation[J]. IEEE Sensors Journal, 2017, 17 (20): 6637- 6645.
|
21 |
ZHANG H J , WANG Y T , WANG S T , et al. Prediction analysis of electromagnetic interference based on gray prediction theory[J]. Applied Mechanics & Materials, 2011, 44-47, 3731- 3735.
|
22 |
ZHANG L , XIONG Z , LIU J Y , et al. Research on virtual gyro configuration of redundant MEMS system based on ANFIS[J]. Optik, 2018, 157, 25- 30.
doi: 10.1016/j.ijleo.2017.08.060
|
23 |
KORKISHKO Y N, FEDOROV V A, PRILUTSKIY V E, et al. Fiber optic gyro for space applications. Results of R&D and flight tests[C]//Proc. of the IEEE International Symposium on Inertial Sensors and Systems, 2016: 37-41.
|
24 |
LEFEVRE H, STEIB A, CLAIRE A, et al. The fiber optic gyro "adventure" at photonetics, iXsea and now iXblue[C]//Proc. of the Conference on Optical Waveguide and Laser Sensors, 2020: 57-59.
|
25 |
LU J Z , HU M Q , YANG Y Q , et al. On-orbit calibration method for redundant IMU based on satellite navigation & star sensor information fusion[J]. IEEE Sensors Journal, 2020, 20 (9): 4530- 4543.
doi: 10.1109/JSEN.2020.2965136
|
26 |
El-SHEIMY N , HOU H Y , NIU X J . Analysis and modeling of inertial sensors using allan variance[J]. IEEE Trans.on Instrumentation and Measurement, 2008, 57 (1): 140- 149.
doi: 10.1109/TIM.2007.908635
|
27 |
FABIAN C , ANDREW C , LENE B O . Quantifying noise in optical tweezers by allan variance[J]. Optic Express, 2009, 17 (15): 13255- 13269.
doi: 10.1364/OE.17.013255
|
28 |
LESAGE P , AYI T . Characterization of frequency stability: analysis of the modified allan variance and properties of its estimate[J]. IEEE Trans.on Instrumentation and Measurement, 1984, 33 (4): 332- 336.
doi: 10.1109/TIM.1984.4315235
|
29 |
LI J L , FANG J C . Not fully overlapping allan variance and total variance for inertial sensor stochastic error analysis[J]. IEEE Trans.on Instrumentation and Measurement, 2013, 62 (10): 2659- 2672.
doi: 10.1109/TIM.2013.2258769
|
30 |
GJB2426A. 光纤陀螺仪测试方法[S]. 北京: 国防科学技术工业委员会, 2004.
|
|
GJB2426A. Test methods for fiber optic gyroscope[S]. Beijing: Commission of Science, Technology and Industry for National Defence, 2004.
|