1 |
KOSUGE Y. Maneuvering target tracking using multiple maneuver model joint probabilistic data association[C]//Proc. of the IEEE Industrial Electronics Society Conference, 1991: 2059-2064.
|
2 |
FAN E, XIE W X, LIU Z X, et al. Combinige generalized JDPA and FRLS filter for tracking multiple maneuvering targets[C]//Proc. of the IEEE International Conference on Signal Processing, 2014: 239-245.
|
3 |
ZHAO S J , WANG Y , WANG P Y , et al. Adaptive non-linear joint probabilistic data association for vehicle target tracking[J]. IEEE Access, 2021, 9, 14138- 14147.
doi: 10.1109/ACCESS.2021.3052555
|
4 |
WHANG I H, LEE J G. Multiple hypotheses tracking for maneuvering targets in clutter environment[C]//Proc. of the Conference on International Session Papers, 1995: 1493-1498.
|
5 |
BLACKMAN S S . Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace & Electronic Systems Magazine, 2009, 19 (1): 5- 18.
|
6 |
LEXA M, CORALUPPI S, CARTHEL C. Distributed MHT and ML-PMHT approaches to multi-sensor passive sonar tracking[C]//Proc. of the IEEE Aerospace Conference, 2020.
|
7 |
MAHLER R , EBRARY I . Statistical multisource multitarget information fusion[M]. Norwood: Artech House, 2007: 565- 682.
|
8 |
VO B N , VO B T , PHUNG D . Labeled random finite sets and the bayes multi-target tracking filter[J]. IEEE Trans.on Signal Processing, 2014, 62 (24): 6554- 6567.
doi: 10.1109/TSP.2014.2364014
|
9 |
VO B T , VO B N . Labeled random finite sets and multi-object conjugate priors[J]. IEEE Trans.on Signal Processing, 2013, 61 (13): 3460- 3475.
doi: 10.1109/TSP.2013.2259822
|
10 |
VO B , VO B , HOANG H G . An efficient implementation of the generalized labeled multi-bernoulli filter[J]. IEEE Trans.on Signal Processing, 2016, 65 (8): 1975- 1987.
|
11 |
HOANG H, VO BA N, VO B T. A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update[C]//Proc. of the International Conference on Information Fusion, 2015: 999-1006.
|
12 |
CAO C H , ZHAO Y B , PANG X J , et al. An efficient implementation of multiple weak targets tracking filter with labeled random finite sets for marine radar[J]. Digital Signal Processing, 2020, 101, 102710.
doi: 10.1016/j.dsp.2020.102710
|
13 |
LI C Y , FAN Z H , SHI R Z . A generalized labelled multi-bernoulli filter for extended targets with unknown clutter rate and detection profile[J]. IEEE Access, 2020, 8, 213772- 213782.
doi: 10.1109/ACCESS.2020.3036900
|
14 |
BEARD M , VO B T , VO B , A solution for large-scale multi-object tracking[J] . IEEE Trans[J]. on Signal Processing, 2020, 68, 2754- 2769.
|
15 |
SARKKA S , NUMMENMAA A . Recursive noise adaptive kalman filtering by variational Bayesian approximations[J]. IEEE Trans.on Automatic Control, 2009, 54 (3): 596- 600.
doi: 10.1109/TAC.2008.2008348
|
16 |
LI W L, JIA Y M, DU J P, et al. PHD filter for multi-target tracking by variational Bayesian approximation[C]//Proc. of the IEEE Conference on Decision & Control, 2013: 7815-7820.
|
17 |
ZHANG G, LIAN F, HAN C, et al. An improved PHD filter based on variational Bayesian method for multi-target tracking[C]// Proc. of the 17th International Conference on Information Fusion, 2014.
|
18 |
YANG J L , GE H W . An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation[J]. Signal Processing, 2013, 93 (9): 2510- 2515.
doi: 10.1016/j.sigpro.2013.03.027
|
19 |
袁常顺, 王俊, 向洪, 等. 基于VB近似的自适应δ-GLMB滤波算法[J]. 系统工程与电子技术, 2017, 39 (2): 237- 243.
|
|
YUAN C S , WANG J , XIANG H , et al. Adaptive δ-GLMB filtering algorithm based on VB approximation[J]. Systems Engineering and Electronics, 2017, 39 (2): 237- 243.
|
20 |
WANG S Y , YIN C , DUAN S K , et al. A modified variational bayesian noise adaptive Kalman filter[J]. Circuits Systems and Signal Processing, 2017, 36 (10): 4260- 4277.
doi: 10.1007/s00034-017-0497-6
|
21 |
闫文旭, 兰华, 王增福, 等. 基于变分贝叶斯的星载雷达非线性滤波[J]. 航空学报, 2020, 41 (S2): 220- 228.
|
|
YAN W X , LAN H , WANG Z F , et al. Nonlinear filtering of spaceborne radar Based on variational Bayes[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S2): 220- 228.
|
22 |
TSENG P . An analysis of the EM algorithm and entropy-like proximal point methods[J]. Mathematics of Operations Research, 2004, 29 (1): 27- 44.
doi: 10.1287/moor.1030.0073
|
23 |
HU Y M , WANG X Z , LAN H , et al. An iterative nonlinear filter using variational Bayesian optimization[J]. Sensors, 2018, 18 (12): 4222.
doi: 10.3390/s18124222
|
24 |
KHAN M E, BAQUÉ P, FLEURET F, et al. Kullback-Leibler proximal variational inference[C]//Proc. of the Advances in Neural Information Processing Systems, 2015: 3402-3410.
|
25 |
HE J , SUN C , ZHANG B , et al. Variational Bayesian-based maximum correntropy cubature Kalman filter with both adaptivity and robustness[J]. IEEE Sensors Journal, 2021, 21 (2): 1982- 1992.
doi: 10.1109/JSEN.2020.3020273
|
26 |
母晓慧, 杨风暴, 刘哲, 等. 基于均方根容积卡尔曼的δ-GLMB多目标跟踪算法[J]. 计算机应用与软件, 2020, 37 (4): 164- 170.
doi: 10.3969/j.issn.1000-386x.2020.04.027
|
|
MU X H , YANG F B , LIU Z , et al. δ-GLMB filter multi-target tracking algorithm based on square-rooted cubature Kalman[J]. Computer Applications and Software, 2020, 37 (4): 164- 170.
doi: 10.3969/j.issn.1000-386x.2020.04.027
|
27 |
HOU L M, LIAN F. Extension of nonlinear δ-generalized labeled multi-Bernoulli filter in multi-target tracking[C]//Proc. of the Chinese Automation Congress, 2018: 2301-2306.
|
28 |
WANG B , YE W , LIU Y H . Variational Bayesian cubature RTS smoothing for transfer alignment of DPOS[J]. IEEE Sensors Journal, 2020, 20 (6): 3270- 3279.
doi: 10.1109/JSEN.2019.2958335
|
29 |
张磊, 郭健, 钱晨, 等. 基于变分贝叶斯的容积平滑变结构滤波[J]. 南京理工大学学报: 自然科学版, 2019, 43 (3): 255- 260.
|
|
ZHANG L , GUO J , QIAN C , et al. Variational Bayesian based cubature smooth variable structure filter[J]. Journal of Nanjing University of Science and Technology, 2019, 43 (3): 255- 260.
|
30 |
SCHUHMACHER D , VO B T , VO B N . A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans.on Signal Processing, 2008, 56 (8): 3447- 3457.
doi: 10.1109/TSP.2008.920469
|