1 |
LIAO K , SI J X , ZHU F Q , et al. Radar HRRP target recognition based on concatenated deep neural networks[J]. IEEE Access, 2018, 6, 29211- 29218.
doi: 10.1109/ACCESS.2018.2842687
|
2 |
LI L , LIU Z , LI T . Radar high resolution range profile recognition via multi-SV method[J]. Journal of Systems Engineering and Electronics, 2017, 28 (5): 879- 889.
doi: 10.21629/JSEE.2017.05.07
|
3 |
LIU J , FANG N , XIE Y J , et al. Scale-space theory-based mutil-scale feature for aircraft classification using HRRP[J]. Electronics Letters, 2016, 52 (6): 475- 477.
doi: 10.1049/el.2015.3583
|
4 |
李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40 (1): 173- 180.
|
|
LI L , LIU Z . Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics & Information Technology, 2018, 40 (1): 173- 180.
|
5 |
ZHOU D Y . Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126, 52- 64.
doi: 10.1016/j.sigpro.2015.12.006
|
6 |
GUO Y , XIAO H T , KAN Y Z , et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12 (2): 188- 197.
doi: 10.1049/iet-spr.2016.0625
|
7 |
PAN M , JIANG J , KONG Q P , et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098
|
8 |
杨予昊, 孙晶明, 虞盛康, 等. 基于卷积神经网络的高分辨距离像目标识别[J]. 现代雷达, 2017, 39 (12): 28- 32.
|
|
YANG Y H , SUN J M , YU S K , et al. High resolution range profile target recognition based on convolutional neural network[J]. Modern Radar, 2017, 39 (12): 28- 32.
|
9 |
FENG B , CHEN B , LIU H W . Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61, 379- 393.
doi: 10.1016/j.patcog.2016.08.012
|
10 |
ZHAO F X , LIU Y X , HUO K , et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18 (1): 173- 187.
|
11 |
CHEN M , SHI X B , ZHANG Y , et al. Deep features learning for medical image analysis with convolutional autoencoder neural network[J]. IEEE Trans.on Big Data, 2017,
doi: 10.1109/TBDATA.2017.2717439
|
12 |
HUANG H , HU X T , ZHAO Y , et al. Modeling task fMRI data via deep convolutional autoencoder[J]. IEEE Trans.on Medical Imaging, 2017, 37 (7): 1551- 1561.
|
13 |
LUO W , LI J , YANG J , et al. Convolutional sparse autoencoders for image classification[J]. IEEE Trans.on Neural Networks, 2018, 29 (7): 3289- 3294.
|
14 |
DU B , XIONG W , WU J , et al. Stacked convolutional denoising auto-encoders for feature representation[J]. IEEE Trans.on Cybernetics, 2017, 47 (4): 1017- 1027.
doi: 10.1109/TCYB.2016.2536638
|
15 |
LUO L, XIONG Y, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[EB/OL]. [2020-07-24]. https://arxiv.org/abs/1902.09843?context=cs.LG.
|
16 |
HOU B R , YAN R Q . Convolutional auto-encoder model for finger-vein verification[J]. IEEE Trans.on Instrumentation & Measurement, 2020, 69 (5): 2067- 2074.
|
17 |
严国萍, 陈禹, 李雨冲, 等. 基于一维堆叠卷积自编码器的分布式应变裂缝检测[J]. 计算机系统应用, 2020, 29 (1): 144- 150.
|
|
YAN G P , CHEN Y , LI Y C , et al. Distributed strain crack detection based on one-dimensional stacked convolutional autoencoder[J]. Computer Systems & Applications, 2020, 29 (1): 144- 150.
|
18 |
张海利, 王普, 高学金, 等. 基于批次图像化的卷积自编码故障监测方法[J]. 控制与决策, 2021, 36 (6): 1361- 1367.
|
|
ZHANG H L , WANG P , GAO X J , et al. Fault detection of batch image-based convolutional autoencoder[J]. Control and Decision, 2021, 36 (6): 1361- 1367.
|
19 |
罗畅, 王洁, 王鹏飞, 等. 卷积自编码器中粗粒度池化特征提取研究[J]. 电子学报, 2017, 45 (10): 2390- 2401.
doi: 10.3969/j.issn.0372-2112.2017.10.012
|
|
LUO C , WANG J , WANG P F , et al. Coarse-grained pooled features learning in convolutional autoencoders[J]. Acta Electronica Sinica, 2017, 45 (10): 2390- 2401.
doi: 10.3969/j.issn.0372-2112.2017.10.012
|
20 |
WAHLBECK K , TUUNAINEN A , AHOKAS A , et al. Dropout rates in randomised antipsychotic drug triais[J]. Psychopharmacology, 2001, 155 (3): 230- 233.
doi: 10.1007/s002130100711
|
21 |
BENGIO Y , LAMBLIN P , DAN P , et al. Greedy layer-wise training of deep networks[J]. Proceedings of the Advances in Neural Information Processing Systems, 2006, 19, 153- 160.
|
22 |
VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408.
|
23 |
LE Q V, NGIAM I, COATES A, et al. On optimization methods for deep learning[C]//Proc. of the 28th International Conference on Machine Learning, 2011.
|
24 |
张国令, 王晓丹, 李睿, 等. 基于栈式降噪稀疏自编码器的极限学习机[J]. 计算机工程, 2020, 46 (9): 61- 67.
|
|
ZHANG G L , WANG X D , LI R , et al. Stacked denoising sparse autoencoder based extreme learning machine[J]. Computer Engineering, 2020, 46 (9): 61- 67.
|