1 |
GOODMAN J W . Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66 (11): 1145- 1150.
doi: 10.1364/JOSA.66.001145
|
2 |
LEE J S . Refined filtering of image noise using local statistics[J]. Computer Graphics & Image Processing, 1981, 15 (4): 380- 389.
|
3 |
王彩云, 胡允侃, 吴淑侠. 基于贝叶斯模型的shearlet域SAR图像去噪方法[J]. 系统工程与电子技术, 2017, 39 (6): 1250- 1255.
|
|
WANG C Y , HU Y K , WU S X . Shearlet domain SAR image denoising method based on Bayesian model[J]. Systems Engineering and Electronics, 2017, 39 (6): 1250- 1255.
|
4 |
刘书君, 吴国庆, 张新征, 等. 基于Shearlet域系数处理的SAR图像降噪[J]. 系统工程与电子技术, 2015, 37 (9): 2023- 2028.
|
|
LIU S J , WU G Q , ZHANG X Z , et al. SAR image denoising via the process of shearlet coefficients[J]. Systems Engineering and Electronics, 2015, 37 (9): 2023- 2028.
|
5 |
刘帅奇, 胡绍海, 肖扬. 基于局部混合滤波的SAR图像去噪[J]. 系统工程与电子技术, 2012, 34 (2): 396- 402.
doi: 10.3969/j.issn.1001-506X.2012.02.34
|
|
LIU S Q , HU S H , XIAO Y . SAR image de-noise base on local hybrid filter[J]. Systems Engineering and Electronics, 2012, 34 (2): 396- 402.
doi: 10.3969/j.issn.1001-506X.2012.02.34
|
6 |
DELEDALLE C , DENIS L , TUPIN F . Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Trans.on Image Processing, 2009, 18 (12): 2661- 2672.
doi: 10.1109/TIP.2009.2029593
|
7 |
PARRILLI S , PODERICO M , ANGELINO C V , et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Trans.on Geoscience & Remote Sensing, 2012, 50 (2): 606- 616.
|
8 |
CHIERCHIA G, COZZOLINO D. SAR image despeckling through convolutional neural networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2017: 5438-5441.
|
9 |
ZHANG K , ZUO W M . Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans.on Image Processing, 2017, 26 (7): 3142- 3155.
doi: 10.1109/TIP.2017.2662206
|
10 |
WANG P , ZHANG H , PATEL V M . SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24 (12): 1763- 1767.
doi: 10.1109/LSP.2017.2758203
|
11 |
LATTARI F , GONZALEZ L B , ASARO F , et al. Deep learning for SAR image despeckling[J]. Remote Sensing, 2019, 11 (13): 1532.
doi: 10.3390/rs11131532
|
12 |
ZHANG Q , YUAN Q Q . Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10 (2): 196.
doi: 10.3390/rs10020196
|
13 |
GUI Y C , XUE L , LI X H . SAR image despeckling using a dilated densely connected network[J]. Remote Sensing Letters, 2018, 9 (7-9): 857- 866.
|
14 |
COZZOLINO D, VERDOLIVA L. Nonlocal SAR image despeckling by convolutional neural networks[C]//Proc. of the IEEE International Geoscience and Remote Sensing Syposium, 2019: 5117-5120.
|
15 |
LI S T , KANG X , HU J . Image fusion with guided filtering[J]. IEEE Trans.on Image Processing, 2013, 22 (7): 2864- 2875.
doi: 10.1109/TIP.2013.2244222
|
16 |
LIU S , LIU T . Convolutional neural network and guided filtering for SAR image denoising[J]. Remote Sensing, 2019, 11 (6): 702.
doi: 10.3390/rs11060702
|
17 |
SZEGEDY C. Going deeper with convolutions[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
18 |
XIE S, GIRSHICK R. Aggregated residual transformations for deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995.
|
19 |
HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
21 |
ULABY F , DOBSON M C . Handbook of radar scattering statistics for terrain[M]. Norwood: Artech House Publishers, 1989.
|
22 |
LEE Y, HWANG J. An energy and GPU-computation efficient backbone network for real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019: 752-760.
|
23 |
CHENG G , HAN J , LU X . Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105 (10): 1865- 1883.
doi: 10.1109/JPROC.2017.2675998
|
24 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL][2020-08-30]. http://arxiv.org/pdf/1412.6980.pdf.
|