1 |
赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 2012.
|
|
ZHAO G Q . Principle of radar countermeasure[M]. Xi'an: Xidian University Press, 2012.
|
2 |
DONG J , WU G W , YANG T T , et al. Battlefield situation awareness and networking based on agent distributed computing[J]. Physical Communication, 2019, 33, 178- 186.
doi: 10.1016/j.phycom.2019.01.002
|
3 |
ZAKUAN F R A , ZAMZURI H , RAHMAN M A A , et al. Threat assessment algorithm for active blind spot assist system using short range radar sensor[J]. Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, 2017, 12 (4): 4270- 4275.
|
4 |
PARK B, AHN J M. Intra-pulse modulation recognition using pulse description words and complex waveforms[C]//Proc. of the IEEE International Conference on Information and Communication Technology Convergence, 2017: 555-560.
|
5 |
ZHOU J L , ZHENG S L , YU X B , et al. Low probability of intercept communication based on structured radio beams using machine learning[J]. IEEE Access, 2019, 7, 169946- 169952.
doi: 10.1109/ACCESS.2019.2955509
|
6 |
KAWALEC A, OWCZAREK R. Radar emitter recognition using intrapulse data[C]//Proc. of the IEEE 15th International Conference on Microwaves, Radar and Wireless Communications, 2004, 2: 435-438.
|
7 |
李昆, 朱卫纲. 基于机器学习的雷达辐射源识别综述[J]. 电子测量技术, 2019, 42 (18): 69- 75.
|
|
LI K , ZHU W G . Overview of radar emitter recognition based on machine learning[J]. Electronic Measurement Technology, 2019, 42 (18): 69- 75.
|
8 |
SINGH S P, KUMAR A, DARBARI H, et al. Machine translation using deep learning: an overview[C]//Proc. of the IEEE International Conference on Computer, Communications and Electronics, 2017: 162-167.
|
9 |
XIONG C M, ZHONG V, SOCHER R. Dynamic coattention networks for question answering[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1611.01604.
|
10 |
LI S T , SONG W W , FANG L Y , et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 57 (9): 6690- 6709.
doi: 10.1109/TGRS.2019.2907932
|
11 |
ZHANG Z , GEIGER J , POHJALAINEN J , et al. Deep learning for environmentally robust speech recognition: an overview of recent developments[J]. ACM Trans.on Intelligent Systems and Technology, 2018, 9 (5): 1- 28.
|
12 |
LI J Y, ZHAO R, HU H, et al. Improving RNN transducer modeling for end-to-end speech recognition[C]//Proc. of the IEEE Automatic Speech Recognition and Understanding Workshop, 2019: 114-121.
|
13 |
WANG D, GONG J B, SONG Y X. W-RNN: news text classification based on a weighted RNN[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1909.13077.
|
14 |
WAN J , YU X , GUO Q . LPI radar waveform recognition based on CNN and TPOT[J]. Symmetry, 2019, 11 (5): 725- 739.
doi: 10.3390/sym11050725
|
15 |
ZHANG M , DIAO M , GAO L Q , et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9 (5): 75- 94.
doi: 10.3390/sym9050075
|
16 |
GUO Q , YU X , RUAN G Q . LPI radar waveform recognition based on deep convolutional neural network transfer learning[J]. Symmetry, 2019, 11 (4): 540- 553.
doi: 10.3390/sym11040540
|
17 |
MEDSKER L R , JAIN L C . Recurrent neural networks: design and applications[M]. Florida: CRC Press, 1999.
|
18 |
陈森森. 基于RNN的雷达辐射源分类识别算法研究[D]. 西安: 西安电子科技大学, 2019.
|
|
CHEN S S. Research on classification and recognition algorithm of radar signal based on RNN[D]. Xi'an: Xidian University, 2019.
|
19 |
YU Z P, LIU G S. Sliced recurrent neural networks[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1807.02291.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the Advances in Neural Information Processing Systems, 2017: 5998-6008.
|
21 |
HUANG C W, NARAYANAN S S. Deep convolutional recurrent neural network with attention mechanism for robust speech emotion recognition[C]//Proc. of the IEEE International Conference on Multimedia and Expo, 2017: 583-588.
|
22 |
BAHULEYAN H, MOU L, VECHTOMOVA O, et al. Varia-tional attention for sequence-to-sequence models[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1712.08207.
|
23 |
苟先太, 吴南方. 基于GRU-Attention神经网络的空中群组态势识别方法[J]. 计算机与现代化, 2019, (10): 11- 16, 33.
|
|
GOU X T , WU N F . Air group situation recognition method based on GRU-attention neural networks[J]. Computer and Modernization, 2019, (10): 11- 16, 33.
|
24 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1502.03167.
|
25 |
BJORCK N, GOMES C P, SELMAN B, et al. Understanding batch normalization[EB/OL]. [2020-10-20]. https://arxiv.org/abs/1806.02375.
|
26 |
SANTURKAR S, TSIPRAS D, ⅡYAS A, et al. How does batch normalization help optimization[C]//Proc. of the 32nd International Conference on Neural Information Processing Systems, 2018: 2483-2493.
|
27 |
HASANI M, KHOTANLOU H. An empirical study on position of the batch normalization layer in convolutional neural networks[C]//Proc. of the 5th Iranian Conference on Signal Processing and Intelligent Systems, 2019.
|
28 |
CAIN L, CLARK J, PAULS E, et al. Convolutional neural networks for radar emitter classification[C]//Proc. of the IEEE 8th Annual Computing and Communication Workshop and Conference, 2018: 79-83.
|
29 |
GU J X , WANG Z H , KUEN J , et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77 (5): 354- 377.
|
30 |
NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proc. of the International Conference on Machine Learning, 2016: 2014-2023.
|
31 |
HAQ I U, GONDAL I, VAMPLEW P, et al. Categorical features transformation with compact one-hot encoder for fraud detection in distributed environment[C]//Proc. of the Australa-sian Conference on Data Mining, 2018: 69-80.
|