1 |
TALBOT K I , DULEY P R , HYATT M H . Specific emitter identification and verification[J]. Technology Review, 2003, 113- 133.
|
2 |
陆满君. 通信辐射源个体识别与参数估计[D]. 哈尔滨: 哈尔滨工程大学, 2009.
|
|
LU M J. Communication emitter identification and parameter estimation[D]. Harbin: Harbin Engineering University, 2009.
|
3 |
徐书华. 基于信号指纹的通信辐射源个体识别技术研究[D]. 武汉: 华中科技大学, 2009.
|
|
XU S H. A study of individual identification technology of communication emitter based on signal fingerprint[D]. Wuhan: Huazhong University of Science and Technology, 2007.
|
4 |
任春辉. 通信电台个体特征分析[D]. 成都: 电子科技大学, 2006.
|
|
REN C H. Individual character analysis of communication transmitter[D]. Chengdu: University of ElectronicScience and Technology of China, 2006.
|
5 |
BERTONCINI C , RUDD K , NOUSAIN B , et al. Wavelet fingerprinting of radio-frequency identification (RFID) tags[J]. IEEE Trans.on Industrial Electronics, 2012, 59 (12): 4843- 4850.
doi: 10.1109/TIE.2011.2179276
|
6 |
唐智灵. 通信辐射源非线性个体识别方法研究[D]. 西安: 西安电子科技大学, 2013.
|
|
TANG Z L. A study of nonlinear method for specific communications emitter identification[D]. Xian: Xidian University, 2013.
|
7 |
唐哲, 雷迎科. 基于最大相关熵的通信辐射源个体识别方法[J]. 通信学报, 2016, 37 (12): 171- 175.
doi: 10.11959/j.issn.1000-436x.2016283
|
|
TANG Z , LEI Y K . Method of individual communication transmitter based on maximum correntropy[J]. Journal on Communication, 2016, 37 (12): 171- 175.
doi: 10.11959/j.issn.1000-436x.2016283
|
8 |
LI L , JI H B , JIANG L . Quadratic time-frequency analysis and sequential recognition for specific emitter identification[J]. IET Signal Processing, 2011, 5 (6): 568- 574.
doi: 10.1049/iet-spr.2010.0070
|
9 |
LOPEZ-RISUENO G , GRAJAL J , SANZ-OSORIO A . Digital channelized receiver based on time-frequency analysis for signal interception[J]. IEEE Trans.on Aerospace & Electronic Systems, 2005, 41 (3): 879- 898.
|
10 |
雷迎科, 郝晓军, 韩慧, 等. 一种新颖的通信辐射源个体细微特征提取方法[J]. 电波科学学报, 2016, 31 (1): 98- 105.
|
|
LEI Y K , HAO X J , HAN H , et al. A novel fine feature extraction method for identifying communication transmitter[J]. Chinese Journal of Radio science, 2016, 31 (1): 98- 105.
|
11 |
ZHANG J W, WANG F G, ZHONG Z D, et al. Novel Hilbert spectrum-based specific emitter identification for single-hop and relaying scenarios[C]//Proc. of the IEEE 28th Global Communication Conference, 2015.
|
12 |
ZHANG J , WANG F , DOBRE O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205.
|
13 |
SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2019, 14 (3): 581- 591.
doi: 10.1109/TIFS.2018.2855665
|
14 |
HUANG N E , SHEN Z , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society: a Mathematical Physical and Engineering Ences, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193
|
15 |
KULIN M , KAZAZ T , MOERMAN I , et al. End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6, 18484- 18501.
doi: 10.1109/ACCESS.2018.2818794
|
16 |
ZHENG S L , CHEN S C , YANG L F , et al. Big data processing architecture for radio signals empowered by deep learning: concept, experiment, applications and challenges[J]. IEEE Access, 2018, 6, 55907- 55922.
doi: 10.1109/ACCESS.2018.2872769
|
17 |
OSHEA T , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications & Networking, 2017, 3 (4): 563- 575.
|
18 |
MERCHANT K , REVAY S , STANTCHEV G , et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 160- 167.
doi: 10.1109/JSTSP.2018.2796446
|
19 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE communications letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465
|
20 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759
|
21 |
WONG L J , HEADLEY W C , MICHAELS A J . Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555.
doi: 10.1109/ACCESS.2019.2903444
|
22 |
韩洁, 张涛, 王欢欢, 等. 基于3D-Hilbert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38 (4): 99- 109.
|
|
HAN J , ZHANG T , WANG H H , et al. Communication emitter individual identification based on 3D-Hilbert energy spectrum and multi-scale fractal festures[J]. Journal on Communication, 2017, 38 (4): 99- 109.
|
23 |
HAN J , ZHANG T , QIU Z , et al. Communication emitter individual identification via 3D‐Hilbert energy spectrum‐based multiscale segmentation features[J]. International Journal of Communication Systems, 2019, 32 (1): e3833.
doi: 10.1002/dac.3833
|
24 |
ZHANG J W , WANG F G , DOBER O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205.
|
25 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2020-10-05]. http://de.arxiv.org/pdf.1412.6572.
|
26 |
MEYSAM S , ERIK G . Adversarial attacks on deep-learning based radio signal classification[J]. IEEE Wireless Communications Letters, 2019, 8 (1): 213- 216.
doi: 10.1109/LWC.2018.2867459
|